Zahid A, Ismail H, Li B, Jin T. Molecular and structural basis of DNA sensors in Anti-viral innate immunity. Front Immunol. (Viral Immunology). 2020;11. https://doi.org/10.3389/fimmu.2020.613039
Su C, Tang TD, Zheng C. DExD/H-box helicases: multifunctional regulators in antiviral innate immunity. Cell Mol Sci. 2022;79(2). https://doi.org/10.1007/s00018-021-04072-6
Yan N, Regalado Magdos AD, Stiggelbout B, Lee Kirsch MA, Lieberman J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol. 2010;11(11):1005–13.
Article PubMed PubMed Central Google Scholar
McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359(6378):eaao6047.
Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780–8.
Asiamah EM, Ekwemalor K, Adjei-Fremah S, Osei B, Newman R, Worku M. Natural and synthetic pathogen associated molecular pattern modulate galectin expression in cow blood. J Anim Sci Technol. 2019;61(5):245–53. https://doi.org/10.5187/jast.2019.61.5.245.
Article PubMed PubMed Central Google Scholar
Roh JS, Sohn DH. Damage -associated molecular patterns in inflammatory disease. Immune Netw. 2018;18(4):e27. https://doi.org/10.4110/in.2018.18.e27.
Article PubMed PubMed Central Google Scholar
Okude H, Ori D, Kawai T. Signaling through nucleic acid sensors and their roles in inflammatory diseases. Front Immunol (Inflammation).2020;11. https://doi.org/10.3389/fimmu.2020.625833
Cheng WY, He XB, Jia HJ, Chen GH, Jin QW, Long ZL, Jing ZZ. The cGAS-STING Signaling pathway is required for the innate immune response against ectromelia virus. Front Immunol. 2018;9:1297.
Article PubMed PubMed Central Google Scholar
Kaushal A. Immune response and pathogenesis of COVID-19 and the strategies for developing the target drugs. Acta Sci Microbiol. 2020;3:9.
Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 2019;567(7748):389–93. https://doi.org/10.1038/s41586-019-0998-5.
Article PubMed PubMed Central Google Scholar
Yan N. Immune disease associated with TREX1 and STING dysfunction. J Interferon Cytokine Res. 2017;37(5):198–206. https://doi.org/10.1089/jir.2016.0086.
Article PubMed PubMed Central Google Scholar
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–66.
Article PubMed PubMed Central Google Scholar
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553–7.
Article PubMed PubMed Central Google Scholar
Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, Clementz MA, Banach BS, Li K, Baker SC, Chen Z. Coronavirus papain- like protease negatively regulate anti-viral innate immune response through disruption of STING-mediated signaling. PLoS One. 2012;7(2):e30802.
Article PubMed PubMed Central Google Scholar
Christensen MH, Paludan SR. Viral evasion of DNA -stimulated innate immune response. Cell Mol Immunol. 2017;14(1):4–13.
Carlsen L, Zhang S, Tian X, Cruz DL, George A, Arnoff TE, EI-Deiry WS. The role of p53 in anti-tumor immunity and response to immunotherapy. Front Mol Biosci. 2023;10:1148389.
Article PubMed PubMed Central Google Scholar
Gan Y, Xiaoying L, Han S, Liang Q, Ma X, Rong P, Wang W, Li W. The cGAS/STING pathway: a novel target for cancer therapy. Front Immunol. 2022;12:795401.
Article PubMed PubMed Central Google Scholar
Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 2003;24(10):528–33.
Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Review Trends Immunol. 2013;34(10):511–9.
Liu Y, Pu F. Updated roles of cGAS-STING in autoimmune diseases. Front Immunol. 2023;14:1254915. https://doi.org/10.3389/fimmu.2023.1254915.
Article PubMed PubMed Central Google Scholar
Wang D, Zhao H, Shen Y, Chen Q. A variety of nucleic acid species sensed by cGAS, implications for its diverse function. Front Immunol (Molecular Innate Immunity). 2022;13. https://doi.org/10.3389/fimmu.2022.826880
Hertzog J, Rehwinkel J. Regulation and inhibition of the DNA sensor cGAS. EMBO Rep. 2020;21(12):e51345.
Article PubMed PubMed Central Google Scholar
Lee H-C, Chathuranga K, Lee J-S. Intracellular sensing of viral genomes and viral evasion. Exp Mol Med. 2019;51(12):1–13.
Article PubMed PubMed Central Google Scholar
Ishikawa H, Barber GN. The STING pathway and regulation of innate immune signaling in response to DNA pathogens. Cell Mol Life Sci. 2011;68(7):1157–65.
Park B, Brinkmann MM, Spooner E, Lee CC, Kim Y-M, Ploegh HL. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol. 2008;9(12):1407–14.
Article PubMed PubMed Central Google Scholar
Hornung V, Latz E. Intracellular DNA recognition. Nat Rev Immunol. 2010;10(2):123–30.
Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord MJ. Retrograde transport pathways utilised by viruses and protein toxins. Virol J. 2006;7(3):26.
Xu R-H, Wong EB, Rubio D, Roscoe F, Ma X, Nair S, et al. Sequential activation of two pathogen-sensing pathways required for type I interferon expression and resistance to an acute DNA virus infection. Immunity. 2015;43(6):1148–59.
Article PubMed PubMed Central Google Scholar
Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339(6121):826–30.
Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361(6403):704–9.
Article PubMed PubMed Central Google Scholar
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498(7454):380–4.
Article PubMed PubMed Central Google Scholar
Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013;3(5):1355–61.
Article PubMed PubMed Central Google Scholar
Shang G, Zhang C, Chen ZJ, Bai X-C, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 2019;567(7748):389–93.
Article PubMed PubMed Central Google Scholar
Ko T-P, Wang Y-C, Yang C-S, Hou M-H, Chen C-J, Chiu Y-F, Chen Y. Crystal structure and functional implication of bacterial STING. Nat Commun. 2022;13(1):26.
Article PubMed PubMed Central Google Scholar
Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, et al. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 2019;38(21):e102718.
留言 (0)