Exploring Ubiquitination in Spinal Cord Injury Therapy: Multifaceted Targets and Promising Strategies

Quadri SA, Farooqui M, Ikram A (2020) Recent update on basic mechanisms of spinal cord injury J/OL. Neurosurg Rev 43(2):425–441. https://doi.org/10.1007/s10143-018-1008-3

Article  PubMed  Google Scholar 

Anjum A, Yazid MD, Fauzi Daud M et al (2020) Spinal cord Injury: pathophysiology, multimolecular interactions, and underlying recovery Mechanisms J/OL. Int J Mol Sci 21(20):7533. https://doi.org/10.3390/ijms21207533

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu X, Xu W, Ren Y et al (2023) Spinal cord injury: molecular mechanisms and therapeutic interventions J/OL. Signal Transduct Target Therapy 8(1):245. https://doi.org/10.1038/s41392-023-01477-6

Article  CAS  Google Scholar 

Katoh H, Yokota K, Fehlings MG (2019) Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds J/OL. Front Cell Neurosci 13:248. https://doi.org/10.3389/fncel.2019.00248

Article  PubMed  PubMed Central  Google Scholar 

De Silva ARI, Page RC (2023) Ubiquitination detection techniques [J/OL]. Exp Biol Med. https://doi.org/10.1177/15353702231191186

Article  Google Scholar 

Liu XY, Huang JC, Zhang T et al (2024) Cyclo(L-Pro-L-Trp) from Chilobrachys jingzhao alleviates formalin-induced inflammatory pain by suppressing the inflammatory response and inhibiting TRAF6-mediated MAPK and NF-κB signaling pathways [J/OL]. Int Immunopharmacol 139:112602. https://doi.org/10.1016/j.intimp.2024.112602

Article  CAS  PubMed  Google Scholar 

The Syvn1 Inhibits neuronal cell ferroptosis by activating Stat3/Gpx4 axis in rat with spinal cord injury - PubMed[EB/OL]. [2024-11-28]. https://pubmed.ncbi.nlm.nih.gov/38803032/

Rong Y, Fan J, Ji C et al (2022) USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating beclin 1 [J/OL]. Cell Death Differ 29(6):1164–1175. https://doi.org/10.1038/s41418-021-00907-8

Article  CAS  PubMed  Google Scholar 

Lu E, Tang Y, Chen J et al (2023) Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury [J/OL]. Exp Neurol 368:114495. https://doi.org/10.1016/j.expneurol.2023.114495

Article  CAS  PubMed  Google Scholar 

Yin Z, Popelka H, Lei Y et al (2020) The roles of ubiquitin in mediating autophagy [J/OL]. Cells 9(9):2025. https://doi.org/10.3390/cells9092025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu HQ (2020) Small molecules that target the ubiquitin system [J/OL]. Biochem Soc Trans 48(2):479–497. https://doi.org/10.1042/BST20190535

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donaghy R, Han X, Rozenova K et al (2019) The BRISC deubiquitinating enzyme complex limits hematopoietic stem cell expansion by regulating JAK2 K63-ubiquitination [J/OL]. Blood 133(14):1560–1571. https://doi.org/10.1182/blood-2018-10-877563

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts JZ, Crawford N, Longley DB (2022) The role of ubiquitination in apoptosis and necroptosis [J/OL]. Cell Death Differ 29(2):272–284. https://doi.org/10.1038/s41418-021-00922-9

Article  CAS  PubMed  Google Scholar 

Cen X, Li Z, Chen X (2023) Ubiquitination in the regulation of autophagy [J/OL]. Acta Biochim Biophys Sin 55(9):1348–1357. https://doi.org/10.3724/abbs.2023149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ubiquitination detection techniques - PubMed [EB/OL] [2023-11-26]. https://pubmed.ncbi.nlm.nih.gov/37787047/

Çetin G, Klafack S, Studencka-Turski M et al (2021) The ubiquitin-proteasome system in immune cells [J/OL]. Biomolecules 11(1):60. https://doi.org/10.3390/biom11010060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv YY, Wang H, Fan HT et al (2022) SUMOylation of Kir7.1 participates in neuropathic pain through regulating its membrane expression in spinal cord neurons [J/OL]. CNS Neurosci Ther 28(8):1259–1267. https://doi.org/10.1111/cns.13871

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Q, Geng Z, Lu J et al (2024) Neddylation of protein, a new strategy of protein post-translational modification for targeted treatment of central nervous system diseases [J/OL]. Front NeuroSci 18:1467562. https://doi.org/10.3389/fnins.2024.1467562

Article  PubMed  PubMed Central  Google Scholar 

Deng SZ, Wu X, Kong L (2024) Ubiquitination, SUMOylation, and NEDDylation related genes serve as prognostic and therapeutic biomarkers for oral squamous cell carcinoma [J/OL]. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol 53(2):114–123. https://doi.org/10.1111/jop.13508

Article  CAS  Google Scholar 

Pellegrino NE, Guven A, Gray K et al (2022) The next frontier: translational development of ubiquitination, SUMOylation, and NEDDylation in cancer [J/OL]. Int J Mol Sci 23(7):3480. https://doi.org/10.3390/ijms23073480

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao J, Li Z (2023) Syringaresinol promotes the recovery of spinal cord injury by inhibiting neuron apoptosis via activating the ubiquitination factor E4B/AKT Serine/Threonine kinase signal pathway [J/OL]. Brain Res 1824:148684. https://doi.org/10.1016/j.brainres.2023.148684

Article  CAS  PubMed  Google Scholar 

Zhong T, Lei K, Lin X et al (2022) Protein ubiquitination in T cell development [J/OL]. Front Immunol 13:941962. https://doi.org/10.3389/fimmu.2022.941962

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koirala A, Pourafshar N (2023) Etiology and management of Edema: a Review [J/OL]. Adv Kidney Dis Health 30(2):110–123. https://doi.org/10.1053/j.akdh.2022.12.002

Article  PubMed  Google Scholar 

Nie X, Liu Y, Yuan T et al (2024) Platelet-rich plasma-derived exosomes promote blood-spinal cord barrier repair and attenuate neuroinflammation after spinal cord injury [J/OL]. J Nanobiotechnol 22(1):456. https://doi.org/10.1186/s12951-024-02737-5

Article  CAS  Google Scholar 

M S, P D, JM B. Edema after CNS trauma: a focus on spinal Cord Injury[J/OL]. Int J Mol Sci, (2023) 24(8)[2023-11-28]. https://pubmed.ncbi.nlm.nih.gov/37108324/. https://doi.org/10.3390/ijms24087159

Song Y, Xue T, Guo S et al (2024) Inhibition of aquaporin-4 and its subcellular localization attenuates below-level central neuropathic pain by regulating astrocyte activation in a rat spinal cord injury model [J/OL]. Neurother: J Am Soc Exp Neurother 21(2):e00306. https://doi.org/10.1016/j.neurot.2023.e00306

Article  Google Scholar 

Huang Y, Li SN, Zhou XY et al (2019) The dual role of AQP4 in cytotoxic and vasogenic edema following spinal cord contusion and its possible association with energy metabolism via COX5A [J/OL]. Front NeuroSci 13:584. https://doi.org/10.3389/fnins.2019.00584

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Liu D, Xue F et al (2021) Anti-malignant ascites effect of total diterpenoids from euphorbiae ebracteolatae radix is attributable to alterations of aquaporins via inhibiting PKC activity in the kidney [J/OL]. Molecules 26(4):942. https://doi.org/10.3390/molecules26040942

Article  CAS  PubMed  PubMed Central  Google Scholar 

JONES A C, KORNEV A P, WENG JH et al (2023) Single-residue mutation in protein kinase C toggles between cancer and neurodegeneration[J/OL]. Biochem J 480(16):1299–1316. https://doi.org/10.1042/BCJ20220397

Article  PubMed  Google Scholar 

WANG Y, WANG Y, ZHANG H et al (2016) Sequential posttranslational modifications regulate PKC degradation[J/OL]. Mol Biol Cell 27(2):410–420. https://doi.org/10.1091/mbc.E15-09-0624

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif