AbdElrazek DA, Hassan NH, Ibrahim MA et al (2024) Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food Chem Toxicol 184:114436. https://doi.org/10.1016/j.fct.2024.114436
AbdElrazek DA, Ibrahim MA, Hassan NH et al (2023) Neuroprotective effect of quercetin and nano-quercetin against cyclophosphamide-induced oxidative stress in the rat brain: role of Nrf2/ HO-1/Keap-1 signaling pathway. Neurotoxicology 98:16–28. https://doi.org/10.1016/j.neuro.2023.06.008
Abdelrahman RE, Khalaf AAA, Elhady MA, Ibrahim MA, Hassanen EI, Noshy PA (2022) Quercetin ameliorates ochratoxin A-Induced immunotoxicity in broiler chickens by modulation of PI3K/AKT pathway. Chem Biol Interact 5(351):109720
Adeyemi OS, Elebiyo TC (2014) Moringa oleifera supplemented diets prevented nickel-induced nephrotoxicity in wistar rats. J Nutr Metab 2014:. https://doi.org/10.1155/2014/958621
Agarwal R, Goel SK, Behari JR (2010) Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol 30:457–468. https://doi.org/10.1002/jat.1517
Akhtar F, Rizvi MMA, Kar SK (2012) Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv 30:310–320. https://doi.org/10.1016/j.biotechadv.2011.05.009
Akinwumi KA, Jubril AJ, Olaniyan OO, Umar YY (2020) Ethanol extract of Nigella sativa has antioxidant and ameliorative effect against nickel chloride-induced hepato-renal injury in rats. Clin Phytosci 6:64. https://doi.org/10.1186/s40816-020-00205-9
Alonso-Español A, Bravo E, Ribeiro-Vidal H, Virto L, Herrera D, Alonso B, Sanz M (2023) The antimicrobial activity of curcumin and xanthohumol on bacterial biofilms developed over dental implant surfaces. Int J Mol Sci 24(3):2335
Article PubMed PubMed Central Google Scholar
Alqahtani LS, Abd-Elhakim YM, Mohamed AA-R et al (2023) Curcumin-loaded chitosan nanoparticles alleviate fenpropathrin-induced hepatotoxicity by regulating lipogenesis and pyroptosis in rats. Food Chem Toxicol 180:114036. https://doi.org/10.1016/j.fct.2023.114036
Amudha K, Pari L (2011) Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats. Chem Biol Interact 193:57–64. https://doi.org/10.1016/j.cbi.2011.05.003
Anwar M, Muhammad F, Akhtar B et al (2020) Nephroprotective effects of curcumin loaded chitosan nanoparticles in cypermethrin induced renal toxicity in rabbits. Environ Sci Pollut Res 27:14771–14779. https://doi.org/10.1007/s11356-020-08051-5
Bancroft KSKSCLJ (2012) Bancroft’s theory and practice of histological techniques, 7 th. Churchill Livingstone, Oxford
Bhatia A, Flamer D, Shah PS, Cohen SP (2016) Transforaminal epidural steroid injections for treating lumbosacral radicular pain from herniated intervertebral discs. Anesth Analg 122:857–870. https://doi.org/10.1213/ANE.0000000000001155
Bouhalit S, Kechrid Z (2018) Assessment of the potential role of L-methionine on nickel sulfate induced renal injury and oxidative stress in rat. Asian J Pharm Clin Res 11:390–394. https://doi.org/10.22159/ajpcr.2018.v11i5.24432
Bozorgzadeh P, Shamsaie Mehrgan M, Pourang N, Hosseini Shekarabi SP (2023) Effects of nickel on liver and bone metabolic functions, biochemical and histopathological responses in common carp (Cyprinus carpio). Iran J Fish Sci 22:526–546. https://doi.org/10.22092/ijfs.2023.129270
Cempel M, Janicka K (2002) Distribution of nickel, zinc, and copper in rat organs after oral administration of Nickel(II) chloride. Biol Trace Elem Res 90:215–226. https://doi.org/10.1385/BTER:90:1-3:215
Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa ). J Altern Complement Med 9:161–168. https://doi.org/10.1089/107555303321223035
Chaurasia S, Chaubey P, Patel RR et al (2016) Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug Dev Ind Pharm 42:694–700. https://doi.org/10.3109/03639045.2015.1064941
Chen QY, Brocato J, Laulicht F, Costa M (2017) Mechanisms of nickel carcinogenesis. In: Mudipalli A, Zelikoff JT (eds) Essential and non-essential metals. Molecular and integrative toxicology. Springer International Publishing AG, New Year, NY, USA, pp 181–197
Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotechnol, Biol Med 6:153–160. https://doi.org/10.1016/j.nano.2009.05.009
Duse L, Baghdan E, Pinnapireddy SR et al (2018) Preparation and characterization of curcumin loaded chitosan nanoparticles for photodynamic therapy. Phys Status Solidi 215:. https://doi.org/10.1002/pssa.201700709
Flora G, Gupta D, Tiwari A (2013) Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst 30:331–368. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007236
Fonseca-Santos B, dos Santos AM, Rodero CF et al (2016) Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. Int J Nanomedicine 11:4553–4562. https://doi.org/10.2147/IJN.S108675
Article PubMed PubMed Central Google Scholar
Freitas M, Fernandes E (2011) Zinc, cadmium and nickel increase the activation of NF-κB and the release of cytokines from THP-1 monocytic cells. Metallomics 3:1238. https://doi.org/10.1039/c1mt00050k
Ganugula R, Arora M, Jaisamut P et al (2017) Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br J Pharmacol 174:2074–2084. https://doi.org/10.1111/bph.13816
Article PubMed PubMed Central Google Scholar
Genchi G, Carocci A, Lauria G et al (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679. https://doi.org/10.3390/ijerph17030679
Article PubMed PubMed Central Google Scholar
Guo H, Yin H, Zuo Z et al (2021) Oxidative stress-mediated apoptosis and autophagy involved in Ni-induced nephrotoxicity in the mice. Ecotoxicol Environ Saf 228:112954. https://doi.org/10.1016/j.ecoenv.2021.112954
Hassan NH, Mehanna S, Hussien AM et al (2023) The potential mechanism underlying the hepatorenal toxicity induced by hymexazol in rats and the role of NF‐κB signaling pathway. J Biochem Mol Toxicol 37:. https://doi.org/10.1002/jbt.23304
Hassanen EI, Abdelrahman RE, Aboul-Ella H et al (2024a) Mechanistic approach on the pulmonary oxido-inflammatory stress induced by cobalt ferrite nanoparticles in rats. Biol Trace Elem Res 202:765–777. https://doi.org/10.1007/s12011-023-03700-5
Hassanen EI, Ahmed LI, Fahim KM et al (2023a) Chitosan nanoparticle encapsulation increased the prophylactic efficacy of Lactobacillus plantarum RM1 against AFM1-induced hepatorenal toxicity in rats. Environ Sci Pollut Res 30:123925–123938. https://doi.org/10.1007/s11356-023-31016-3
Hassanen EI, Ebedy YA, Ibrahim MA et al (2022a) Insights overview on the possible protective effect of chitosan nanoparticles encapsulation against neurotoxicity induced by carbendazim in rats. Neurotoxicology 91:31–43. https://doi.org/10.1016/j.neuro.2022.04.013
Hassanen EI, Hussien AM, Mehanna S et al (2022b) Comparative assessment on the probable mechanisms underlying the hepatorenal toxicity of commercial imidacloprid and hexaflumuron formulations in rats. Environ Sci Pollut Res 29:29091–29104. https://doi.org/10.1007/s11356-021-18486-z
Hassanen EI, Hussien AM, Mehanna S, Morsy EA (2023b) Chitosan coating silver nanoparticles as a promising feed additive in broilers chicken. BMC Vet Res 19:265. https://doi.org/10.1186/s12917-023-03826-7
Article PubMed PubMed Central Google Scholar
Hassanen EI, Kamel S, Issa MY et al (2024b) Phenolic-rich fraction of green tea attenuates histamine-mediated cardiopulmonary toxicity by inhibiting Cox-2/NF-κB signaling pathway and regulating oxidant/antioxidant balance. Beni-Suef Univ J Basic Appl Sci 13:6. https://doi.org/10.1186/s43088-024-00464-2
Hassanen EI, Khalaf AA, Tohamy AF et al (2019a) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 14:4723–4739. https://doi.org/10.2147/IJN.S207644
Article PubMed PubMed Central Google Scholar
Hassanen EI, Morsy EA, Hussien AM et al (2021) Comparative assessment of the bactericidal effect of nanoparticles of copper oxide, silver, and chitosan-silver against Escherichia coli infection in broilers. Biosci Rep 41:. 10.1042/BSR20204091
Hassanen EI, Ragab E (2021) In vivo and in vitro assessments of the antibacterial potential of chitosan-silver nanocomposite against methicillin-resistant staphylococcus aureus–induced infection in rats. Biol Trace Elem Res 199:244–257. https://doi.org/10.1007/s12011-020-02143-6
Hassanen EI, Tohamy A, Issa MY et al
留言 (0)