The need for smart microalgal bioprospecting

Addicted 04 (Wikipedia User). Wikipedia File Australia on the globe (Australia centered).svg 2014. https://en.m.wikipedia.org/wiki/File:Australia_on_the_globe_(Australia_centered).svg. Accessed 17 Dec 2024.

Jin CR, Kim JY, Kim DH, Jeon MS, Choi YE. In vivo monitoring of intracellular metabolite in a microalgal cell using an aptamer/graphene oxide nanosheet complex. ACS Appl Bio Mater. 2021;4(6):5080–9.

Article  PubMed  CAS  Google Scholar 

Kim JY, Jin CR, Park J, Kim DG, Kim HS, Choi Y-E. Simultaneous probing of dual intracellular metabolites (ATP and paramylon) in live microalgae using graphene oxide/aptamer nanocomplex. Microchim Acta. 2022;189(3):88.

Article  CAS  Google Scholar 

Ren L, Chen Y, Li P, Mao Z, Huang P-H, Rufo J, et al. A high-throughput acoustic cell sorter. Lab Chip. 2015;15(19):3870–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thermo Fisher Scientific INC. CTS Rotea Counterflow Centrifugation System Brochure. https://www.thermofisher.com/au/en/home/clinical/cell-gene-therapy/cell-therapy/cell-therapy-manufacturingsolutions/rotea-counterflow-centrifugation-system/features.html. Accessed 17 Dec 2024.

Bhola V, Swalaha F, Ranjith Kumar R, Singh M, Bux F. Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol. 2014;11(7):2103–18.

Article  CAS  Google Scholar 

Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci. 2020;11:279.

Article  PubMed  PubMed Central  Google Scholar 

Barsanti L, Gualtieri P. Algae: anatomy, biochemistry, and biotechnology. 3rd ed. Milton: Taylor & Francis Group; 2022.

Google Scholar 

Guiry MD. How many species of algae are there? J Phycol. 2012;48(5):1057–63.

Article  PubMed  Google Scholar 

Park BS, Li Z. Taxonomy and ecology of marine algae. J Mar Sci Eng. 2022;10(1):105.

Article  Google Scholar 

Stevenson J. Ecological assessments with algae: a review and synthesis. J Phycol. 2014;50(3):437–61.

Article  PubMed  Google Scholar 

Hopes A, Mock T. Evolution of microalgae and their adaptations in different marine ecosystems. eLS. 2015;3:1.

Google Scholar 

Barati B, Zeng K, Baeyens J, Wang S, Addy M, Gan S-Y, et al. Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration. Biomass Bioenerg. 2021;145: 105927.

Article  CAS  Google Scholar 

Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018;17(1):36.

Article  PubMed  PubMed Central  Google Scholar 

Mobin S, Alam F. Some promising microalgal species for commercial applications: a review. Energy Procedia. 2017;110:510–7.

Article  CAS  Google Scholar 

Loke SP. Global market and economic analysis of microalgae technology: status and perspectives. Biores Technol. 2022;357: 127329.

Article  Google Scholar 

Garbary DJ, Bąk M, Dąbek P, Witkowski A. Abstracts of papers to be presented at the 11th international phycological congress. Phycologia. 2017;56(sup4):1–224.

Article  Google Scholar 

Chisti Y. Chapter 2-society and microalgae: understanding the past and present. In: Fleurence A, Fleurence J, editors. Microalgae in health and disease prevention. New York: Academic Press; 2018.

Google Scholar 

West JB. The strange history of atmospheric oxygen. Physiol Rep. 2022;10(6): e15214.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Prihanto A, Jatmiko YD, Nurdiani R, Miftachurrochmah A, Wakayama M. Freshwater microalgae as promising food sources: nutritional and functional properties. Open Microbiol J. 2022;16: e2206200.

Article  Google Scholar 

Alvarez AL, Weyers SL, Goemann HM, Peyton BM, Gardner RD. Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res. 2021;54: 102200.

Article  Google Scholar 

Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol. 2019;39(8):981–98.

Article  PubMed  Google Scholar 

Patel A, Matsakas L, Rova U, Christakopoulos P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Biores Technol. 2019;278:424–34.

Article  CAS  Google Scholar 

Lafarga T, Sánchez-Zurano A, Morillas-España A, Acién-Fernández FG. Extremophile microalgae as feedstock for high-value carotenoids: a review. Int J Food Sci Technol. 2021;56(10):4934–41.

Article  CAS  Google Scholar 

Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol. 2015;184:363–72.

Article  PubMed  CAS  Google Scholar 

Domozych D, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG. The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. 2012;3:82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234(1):64–76.

Article  PubMed  CAS  Google Scholar 

Beardall J, Raven JA. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia. 2004;43(1):26–40.

Article  Google Scholar 

Claustre H, Legendre L, Boyd PW, Levy M. The oceans’ biological carbon pumps: framework for a research observational community approach. Front Mar Sci. 2021;8: 780052.

Article  Google Scholar 

Kholssi R, Lougraimzi H, Moreno-Garrido I. Effects of global environmental change on microalgal photosynthesis, growth and their distribution. Mar Environ Res. 2023;184: 105877.

Article  PubMed  CAS  Google Scholar 

Bradbury J. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients. 2011;3(5):529–54.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, et al. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids. 1999;34(S1 Part 1):S39–47.

PubMed  CAS  Google Scholar 

Behrenfeld MJ. Climate-mediated dance of the plankton. Nat Clim Chang. 2014;4(10):880–7.

Article  Google Scholar 

Administration NOaA. Carbon dioxide now more than 50% higher than pre-industrial levels. 2022.

Petrou K, Kranz SA, Trimborn S, Hassler CS, Ameijeiras SB, Sackett O, et al. Southern Ocean phytoplankton physiology in a changing climate. J Plant Physiol. 2016;203:135–50.

Article  PubMed  CAS  Google Scholar 

Beijerinck MW. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen. Algen Bot Ztg. 1890;48(725–72):81–8.

Google Scholar 

Lustig A, Levine AJ. One hundred years of virology. J Virol. 1992;66(8):4629–31.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bos L. Beijerinck’s work on tobacco mosaic virus: historical context and legacy. Philos Trans R Soc Lond B Biol Sci. 1999;354(1383):675–85.

Article  PubMed  PubMed Central  CAS  Google Scholar 

García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol. 2017;10(5):1017–24.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif