A. Far, Amplifier for energy harvesting: low voltage, ultra low current, rail-to-rail input-output, high speed. in 2016 IEEE International Autumn Meeting on ROPEC, (Ixtapa, 2016), pp. 1–6. https://doi.org/10.1109/ROPEC.2016.7830520
M. Magno, X. Wang, M. Eggimann, L. Cavigelli, L. Benini, InfiniWolf: energy efficient smart bracelet for edge computing with dual source energy harvesting, in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), (Grenoble, 2020), pp. 342–345. https://doi.org/10.23919/DATE48585.2020.9116218
F. Centurelli, R.D. Sala, P. Monsurrò, G. Scotti, A. Trifiletti, A tree-based architecture for high-performance ultra-low-voltage amplifiers. J. Low Power Electr. Appl. 12(1), 12 (2022). https://doi.org/10.3390/jlpea12010012
A. Far, Low noise rail-to-rail amplifier runs fast at ultra low currents and targets energy harvesting, in 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), (Ixtapa, 2017), pp. 1–6. https://doi.org/10.1109/ROPEC.2017.8261575
A. Richelli, L. Colalongo, Z. Kovacs-Vajna, G. Calvetti, D. Ferrari, M. Finanzini, S. Pinetti, E. Prevosti, J. Savoldelli, S. Scarlassara, A survey of low voltage and low power amplifier topologies. J. Low Power Electr. Appl. 8(3), 22 (2018). https://doi.org/10.3390/jlpea8030022
D. Cellucci, F. Centurelli, V. Di Stefano, P. Monsurrò, S.. Pennisi, G.. Scotti, A.. Trifiletti, 0.6-V CMOS cascode OTA with complementary gate-driven gain-boosting and forward body bias. Intern. J. Circ. Theory Appl. 48(1), 15–27 (2020). https://doi.org/10.1002/cta.2703
M. Akbari, O.A. Hashemipour, 0.6-V, 0.4-µW bulk-driven operational amplifier with rail-to-rail input/output swing. Analog. Integr. Circ. Sig. Process 86, 341–351 (2016). https://doi.org/10.1007/s10470-015-0686-9
E. Cabrera-Bernal, S. Pennisi, A.D. Grasso, A. Torralba, R.G. Carvajal, 0.7-V Three-stage class-AB CMOS operational transconductance amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 63(11), 1807–1815 (2016). https://doi.org/10.1109/TCSI.2016.2597440
J.M.A. Miguel, A.J. Lopez-Martin, L. Acosta, J. Ramirez-Angulo, R.G. Carvajal, Using floating gate and quasi-floating gate techniques for rail-to-rail tunable CMOS transconductor design. IEEE Trans. Circ. Syst. I Regul. Pap. 58(7), 1604–1614 (2011). https://doi.org/10.1109/TCSI.2011.2157782
Article MathSciNet MATH Google Scholar
F. Centurelli, P. Monsurrò, G. Parisi, P. Tommasino, A. Trifiletti, A topology of fully differential class-AB symmetrical OTA with improved CMRR. IEEE Trans. Circuits Syst. II Express Briefs 65(11), 1504–1508 (2018). https://doi.org/10.1109/TCSII.2017.2742240
M.P. Garde, A. Lopez-Martin, J.M. Algueta, R.G. Carvajal, J. Ramirez-Angulo, Class AB amplifier with enhanced slew rate and GBW. Int. J. Circuit Theory Appl. 47(8), 1199–1210 (2019). https://doi.org/10.1002/cta.2650
K.A. Ng, Y.P. Xu, A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J. Solid State Circuits 51(3), 724–737 (2016). https://doi.org/10.1109/JSSC.2015.2512935
F. Castaño, G. Torelli, R. Pérez-Aloe, J. M. Carrillo, Low-voltage rail-to-rail bulk-driven CMFB network with improved gain and bandwidth, in 2010 17th IEEE international conference on electronics, circuits and systems, (Athens, 2010), pp. 207–210. https://doi.org/10.1109/ICECS.2010.5724490
F. Centurelli, P. Monsurrò, A. Trifiletti, High-gain, high-CMRR class AB operational transconductance amplifier based on the flipped voltage follower. Int. J. Circuit Theory Appl. 47(4), 499–512 (2019). https://doi.org/10.1002/cta.2599
Y. Wang, Q. Zhang, X. Zhao, L. Dong, An enhanced bulk-driven OTA with high transconductance against CMOS scaling. AEU-Int. J. Electron. Commun. (2021). https://doi.org/10.1016/j.aeue.2020.153581
A.D. Grasso, S. Pennisi, G. Scotti, A. Trifiletti, 0.9-V class-AB miller OTA in 0.35- μm CMOS with threshold-lowered non-tailed differential pair. IEEE Trans. Circuits Syst. I Regul. Pap. 64(7), 1740–1747 (2017). https://doi.org/10.1109/TCSI.2017.2681964
F. Centurelli, R.D. Sala, P. Monsurrò, G. Scotti, A. Trifiletti, A novel OTA architecture exploiting current gain stages to boost bandwidth and slew-rate. Electronics 10(14), 1638 (2021). https://doi.org/10.3390/electronics10141638
W.M.C. Sansen, P.M. Van Peteghem, An area-efficient approach to the design of very-large time constants in switched-capacitor integrators. IEEE J. Solid-State Circuits 19(5), 772–780 (1984). https://doi.org/10.1109/JSSC.1984.1052220
Article ADS MATH Google Scholar
P. Kinget, M. Steyaert, J. van der Spiegel, Full analog CMOS integration of very large time constants for synaptic transfer in neural networks. Analog. Integr. Circ. Sig. Process 2, 281–295 (1992). https://doi.org/10.1007/BF00228712
W. H. G. Deguelle, Limitations on the integration of analog filters for frequencies below 10 Hz, in ESSCIRC '88: Fourteenth European Solid-State Circuits Conference, (Manchester, 1988) pp. 131–134. https://doi.org/10.1109/ESSCIRC.1988.5468391
P. Shah, A fully integrated continuous-time 1Hz low-pass filter with high dynamic range and low distortion, in ESSCIRC '93: Nineteenth European Solid-State Circuits Conference, (Seville, 1993), pp. 182–185
Q. Huang, M. Oberle, A 0.5-mW passive telemetry IC for biomedical applications. IEEE J. Solid State Circuits 33(7), 937–946 (1998). https://doi.org/10.1109/4.701225
Article ADS MATH Google Scholar
J. Silva-Martinez, J. Salcedo-Suñer, IC voltage to current transducers with very small transconductance. Analog. Integr. Circuits Signal Process. 13, 285–293 (1997). https://doi.org/10.1023/A:1008286718560
P. Garde, Transconductance cancellation for operational amplifiers. IEEE J. Solid State Circuits 12(3), 310–311 (1977). https://doi.org/10.1109/JSSC.1977.1050898
Article ADS MATH Google Scholar
B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd edn. (McGraw-Hill Education, New York, 2022), pp. 371–379
S. Lee, C. Wang, Y. Chu, Low-voltage OTA–C filter with an area- and power-efficient OTA for biosignal sensor applications. IEEE TBIOCAS 13, 56–61 (2019). https://doi.org/10.1109/TBCAS.2018.2882521(2019)
C. Sun, S. Lee, A fifth-order butterworth OTA-C LPF with multiple-output differential-input OTA for ECG applications. IEEE TCASII 65, 421–425 (2018). https://doi.org/10.1109/TCSII.2017.2695366.(2018)
J. Pérez-Bailón, B. Calvo, N. Medrano, A CMOS low pass filter for SoC lock-in-based measurement devices. Sensors 19(23), 5173 (2019). https://doi.org/10.3390/s19235173
Article ADS MATH Google Scholar
S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, E. Sanchez-Sinencio, A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 47(12), 1391–1398 (2000). https://doi.org/10.1109/82.899631
A. Veeravalli, E. Sanchez-Sinencio, J. Silva-Martinez, Transconductance amplifier structures with very small transconductances: a comparative design approach. IEEE J. Solid-State Circuits 37(6), 770–775 (2002). https://doi.org/10.1109/JSSC.2002.1004582
E. Rodriguez-Villegas, A. Yufera, A. Rueda, A 1.25-V micropower Gm-C filter based on FGMOS transistors operating in weak inversion. IEEE J. Solid-State Circuits 39(1), 100–111 (2004). https://doi.org/10.1109/JSSC.2003.820848
X. Qian, Y.P. Xu, X. Li, A CMOS continuous-time low-pass notch filter for EEG systems. Analog. Integr. Circ. Sig. Process 44, 231–238 (2005). https://doi.org/10.1007/s10470-005-3007-x
S.-Y. Lee, C.-J. Cheng, Systematic design and modeling of a OTA-c filter for portable ECG detection. IEEE Trans. Biomed. Circuits Syst. 3(1), 53–64 (2009). https://doi.org/10.1109/TBCAS.2008.2007423
留言 (0)