J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells, n.d. (2017) https://www.science.org
A. Umar, P.K. Sadanand, D.K. Singh, H. Dwivedi, A.A. Algadi, M.A.M. Ibrahim, S. Alhammai, Baskoutas, High Power-Conversion efficiency of lead-free Perovskite Solar cells: a theoretical investigation. Micromachines (Basel). 13 (2022). https://doi.org/10.3390/mi13122201
Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy. 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012
P. Metrangolo, L. Canil, A. Abate, G. Terraneo, G. Cavallo, Halogen Bonding in Perovskite Solar cells: a New Tool for improving Solar Energy Conversion. AngewandteChemie - Int. Ed. 61 (2022). https://doi.org/10.1002/anie.202114793
X. Jiang, Z. Zang, Y. Zhou, H. Li, Q. Wei, Z. Ning, Tin Halide Perovskite Solar cells: an Emerging Thin-Film Photovoltaic Technology. Acc. Mater. Res. 2, 210–219 (2021). https://doi.org/10.1021/accountsmr.0c00111
D. Jayan, K.V. Sebastian, Comparative study on the performance of different lead-based and lead-free Perovskite Solar cells. Adv. Theory Simul. 4 (2021). https://doi.org/10.1002/adts.202100027
Z. Xiao, Z. Song, Y. Yan, Lead-Free Metal Halide Perovskites for Solar Cell Applications: A Theoretical Perspective, in: Conference Record of the IEEE Photovoltaic Specialists Conference, Institute of Electrical and Electronics Engineers Inc., pp. 0025–0027 (2020)https://doi.org/10.1109/PVSC45281.2020.9300781
P. Saha, S. Singh, S. Bhattacharya, Efficient and lead-free Perovskite Solar cells based on defect-ordered methyl ammonium Antimony Iodide. IEEE Trans. Electron. Devices. 70, 1095–1101 (2023). https://doi.org/10.1109/TED.2023.3235870
Article ADS MATH Google Scholar
J.W. Xiao, C. Shi, C. Zhou, D. Zhang, Y. Li, Q. Chen, Contact Engineering: Electrode materials for highly efficient and stable Perovskite Solar cells, Solar RRL 1 (2017). https://doi.org/10.1002/solr.201700082
A. Husainat, W. Ali, P. Cofie, J. Attia, J. Fuller, Simulation and Analysis of Methylammonium Lead Iodide (CH3NH3PbI3)Perovskite Solar Cell with Au Contact Using SCAPS 1D Simulator, American Journal of Optics and Photonics 7 (2019) 33. https://doi.org/10.11648/j.ajop.20190702.12
X. Huang, Z. Yu, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Meng, Preparation of fluorine-doped tin oxide (SnO2:F) film on polyethylene terephthalate (PET) substrate. Mater. Lett. 64, 1701–1703 (2010). https://doi.org/10.1016/j.matlet.2010.05.001
Article ADS MATH Google Scholar
M.S. Rahman, S. Miah, M.S.W. Marma, T. Sabrina, Simulation based Investigation of Inverted Planar Perovskite Solar Cell with All Metal Oxide Inorganic Transport Layers, in: 2nd International Conference on Electrical, Computer and Communication Engineering, ECCE 2019, Institute of Electrical and Electronics Engineers Inc., 2019. https://doi.org/10.1109/ECACE.2019.8679283
A. Sachchidanand, P. Kumar, Sharma, Performance Investigation of Organic/Inorganic bottom cell on lead-free Cs3Sb2Br9Based all-Perovskite Tandem Solar Cell. IEEE Trans. Electron. Devices. 69, 3462–3469 (2022). https://doi.org/10.1109/TED.2022.3167965
Article ADS MATH Google Scholar
Y. Wang, L. Duan, M. Zhang, Z. Hameiri, X. Liu, Y. Bai, X. Hao, PTAA as efficient hole transport materials in Perovskite Solar Cells: a review. Solar RRL. 6 (2022). https://doi.org/10.1002/solr.202200234
J. Kern, J. Heitmann, M. Müller, Importance of the buffer Layer Properties for the performance of Perovskite/Silicon Tandem Solar Cells. ACS Appl. Energy Mater. 6, 2199–2206 (2023). https://doi.org/10.1021/acsaem.2c03288
N. Mundhaas, Z.J. Yu, K.A. Bush, H.-P. Wang, J. Hausele, S. Kavadiya, M.D. Mcgehee, Z.C. Holman, Series Resistance Measurements of Perovskite Solar Cells Using Jsc-Voc Measurements, n.d
H. Dong, S. Pang, Y. Zhang, D. Chen, W. Zhu, H. Xi, J. Chang, J. Zhang, C. Zhang, Y. Hao, Improving electron extraction ability and device stability of perovskite solar cells using a compatible PCBM/AZO electron transporting bilayer. Nanomaterials. 8 (2018). https://doi.org/10.3390/nano8090720
D. Pérez-Del-Rey, P.P. Boix, M. Sessolo, A. Hadipour, H.J. Bolink, Interfacial modification for high-efficiency vapor-phase-deposited Perovskite Solar cells based on a metal oxide buffer layer. J. Phys. Chem. Lett. 9, 1041–1046 (2018). https://doi.org/10.1021/acs.jpclett.7b03361
F. Anwar, R. Mahbub, S.S. Satter, S.M. Ullah, Effect of different HTM layers and Electrical parameters on ZnO Nanorod-based lead-free Perovskite Solar cell for high-efficiency performance. Int. J. Photoenergy. 2017 (2017). https://doi.org/10.1155/2017/9846310
C. Besleaga, L.E. Abramiuc, V. Stancu, A.G. Tomulescu, M. Sima, L. Trinca, N. Plugaru, L. Pintilie, G.A. Nemnes, M. Iliescu, H.G. Svavarsson, A. Manolescu, I. Pintilie, Iodine Migration and Degradation of Perovskite Solar cells enhanced by metallic electrodes. J. Phys. Chem. Lett. 7, 5168–5175 (2016). https://doi.org/10.1021/acs.jpclett.6b02375
M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, R. Dabou, Simulation of High Efficiency CIGS Solar cells with SCAPS-1D Software. Energy Procedia, Elsevier Ltd, pp. 736–744 (2015) https://doi.org/10.1016/j.egypro.2015.07.809
K. Mishra, R.K. Chauhan, R. Mishra, V. Srivastava, Performance optimization of lead-free inorganic perovskite solar cell using SCAPS-1D. J. Opt. (India). (2023). https://doi.org/10.1007/s12596-023-01466-6
C. Dubey, D.K. Jarwal, H. Kumar, Y. Kumar, K. Mummaneni, G. Rawat, Development of highly efficient ZnO nanorod-based nontoxic Perovskite Solar Cell using AZO buffer layer and Lanthanide Doping. IEEE Trans. Electron. Devices. 69, 622–630 (2022). https://doi.org/10.1109/TED.2021.3138375
M.S. Jamal, S.A. Shahahmadi, P. Chelvanathan, N. Asim, H. Misran, M.I. Hossain, N. Amin, K. Sopian, M. Akhtaruzzaman, Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik (Stuttg). 182, 1204–1210 (2019). https://doi.org/10.1016/j.ijleo.2018.12.163
F. Izadi, A. Ghobadi, A. Gharaati, M. Minbashi, A. Hajjiah, Effect of interface defects on high efficient perovskite solar cells. Optik (Stuttg). 227 (2021). https://doi.org/10.1016/j.ijleo.2020.166061
T. Goudon, V. Miljanović, C. Schmeiser, On the Shockley-read-hall model: generation-recombination in semiconductors. SIAM J. Appl. Math. 67, 1183–1201 (2007). https://doi.org/10.1137/060650751
Article MathSciNet MATH Google Scholar
P. Singh, N.M. Ravindra, Analysis of series and shunt resistance in silicon solar cells using single and double exponential models. Emerg. Mater. Res. 1, 33–38 (2012). https://doi.org/10.1680/emr.11.00008
S. Aseena, N. Abraham, V. Suresh, Babu, Optimization of Layer Thickness of ZnO Based Perovskite Solar Cells Using SCAPS 1D, in: Mater Today Proc (Elsevier Ltd, 2020), pp. 3432–3437. https://doi.org/10.1016/j.matpr.2020.09.077
P. Roy, S. Tiwari, A. Khare, An investigation on the influence of temperature variation on the performance of tin (sn) based perovskite solar cells using various transport layers and absorber layers. Results Opt. 4 (2021). https://doi.org/10.1016/j.rio.2021.100083
留言 (0)