McGrath R, McGrath BM, Al Snih S, et al. Collective weakness and fluidity in weakness status associated with basic self-care limitations in older Americans. Am J Med Open. 2024;11:100065. https://doi.org/10.1016/j.ajmo.2024.100065.
Article PubMed PubMed Central Google Scholar
Beaudart C, Rolland Y, Cruz-Jentoft AJ, et al. Assessment of muscle function and physical performance in daily clinical practice: A position paper endorsed by the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Calcif Tissue Int. 2019;105(1):1–14. https://doi.org/10.1007/s00223-019-00545-w.
Article CAS PubMed Google Scholar
Duchowny KA, Clarke PJ, Peterson MD. Muscle weakness and physical disability in older Americans: Longitudinal findings from the U.S. health and retirement study. J Nutr Health Aging. 2018;22(4):501–7. https://doi.org/10.1007/s12603-017-0951-y.
Article CAS PubMed PubMed Central Google Scholar
World Health Organization. Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. Accessed 29 Aug 2024.
World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. United Nations. Accessed 10/1/2024, 2024.
Ethgen O, Beaudart C, Buckinx F, Bruyère O, Reginster JY. The future prevalence of sarcopenia in Europe: A claim for public health action. Calcif Tissue Int. 2017;100(3):229–34. https://doi.org/10.1007/s00223-016-0220-9.
Article CAS PubMed Google Scholar
Seeman TE, Merkin SS, Crimmins EM, Karlamangla AS. Disability trends among older Americans: National health and nutrition examination surveys, 1988–1994 and 1999–2004. Am J Public Health. 2010;100(1):100–7. https://doi.org/10.2105/ajph.2008.157388.
Article PubMed PubMed Central Google Scholar
García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100-2113.e5. https://doi.org/10.1016/j.apmr.2018.01.008.
Garmany A, Yamada S, Terzic A. Longevity leap: mind the healthspan gap. NPJ Regen Med. 2021;6(1):57. https://doi.org/10.1038/s41536-021-00169-5.
Article CAS PubMed PubMed Central Google Scholar
Kwak JY, Kwon KS. pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia. Ann Geriatr Med Res. 2019;23(3):98–104. https://doi.org/10.4235/agmr.19.0028.
Article PubMed PubMed Central Google Scholar
Rolland Y, Dray C, Vellas B, Barreto PS. Current and investigational medications for the treatment of sarcopenia. Metabolism. 2023;149:155597. https://doi.org/10.1016/j.metabol.2023.155597.
Article CAS PubMed Google Scholar
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3–19. https://doi.org/10.1002/jcsm.12238.
Clark BC. Neural mechanisms of age-related loss of muscle performance and physical function. J Gerontol A Biol Sci Med Sci. 2023;78(Suppl 1):8–13. https://doi.org/10.1093/gerona/glad029.
Article PubMed PubMed Central Google Scholar
Ashe J. Force and the motor cortex. Behav Brain Res. 1997;87(2):255–69. https://doi.org/10.1016/s0166-4328(97)00752-3.
Article CAS PubMed Google Scholar
Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol. 2009;120(12):2040–54. https://doi.org/10.1016/j.clinph.2009.08.009.
Article CAS PubMed PubMed Central Google Scholar
Enoka RM, Duchateau J. Rate coding and the control of muscle force. Cold Spring Harb Perspect Med. 2017;7(10):a029702. https://doi.org/10.1101/cshperspect.a029702.
Article PubMed PubMed Central Google Scholar
Wages NP, Mousa MH, Clark LA, et al. Reductions in motor unit firing are associated with clinically meaningful leg extensor weakness in older adults. Calcif Tissue Int. 2023. https://doi.org/10.1007/s00223-023-01123-x.
Article PubMed PubMed Central Google Scholar
Orssatto LBR, Borg DN, Pendrith L, Blazevich AJ, Shield AJ, Trajano GS. Do motoneuron discharge rates slow with aging? A systematic review and meta-analysis. Mech Ageing Dev. 2022;203:111647. https://doi.org/10.1016/j.mad.2022.111647.
Clark LA, Manini TM, Wages NP, Simon JE, Russ DW, Clark BC. Reduced neural excitability and activation contribute to clinically meaningful weakness in older adults. J Gerontol A Biol Sci Med Sci. 2021;76(4):692–702. https://doi.org/10.1093/gerona/glaa157.
Orssatto LBR, Borg DN, Blazevich AJ, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motoneuron excitability is reduced in soleus and tibialis anterior of older adults. Geroscience. 2021;43(6):2719–35. https://doi.org/10.1007/s11357-021-00478-z.
Article PubMed PubMed Central Google Scholar
Heckman CJ, Johnson M, Mottram C, Schuster J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist. 2008;14(3):264–75. https://doi.org/10.1177/1073858408314986.
Article CAS PubMed PubMed Central Google Scholar
Heckman CJ. Computer simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool. J Neurophysiol. 1994;71(5):1727–39. https://doi.org/10.1152/jn.1994.71.5.1727.
Article CAS PubMed Google Scholar
Martino G, Valli G, Sarto F, Franchi MV, Narici MV, Dev G. Neuromodulatory contribution to muscle force production after short-term unloading and active recovery. Med Sci Sports Exerc. 2024;56(9):1830–9. https://doi.org/10.1249/mss.0000000000003473.
Article PubMed PubMed Central Google Scholar
Orssatto LBR, Rodrigues P, Mackay K, et al. Intrinsic motor neuron excitability is increased after resistance training in older adults. J Neurophysiol. 2023;129(3):635–50. https://doi.org/10.1152/jn.00462.2022.
Thorstensen JR, Henderson TT, Kavanagh JJ. Serotonergic and noradrenergic contributions to motor cortical and spinal motoneuronal excitability in humans. Neuropharmacology. 2024;242:109761. https://doi.org/10.1016/j.neuropharm.2023.109761.
Article CAS PubMed Google Scholar
Murray KC, Stephens MJ, Ballou EW, Heckman CJ, Bennett DJ. Motoneuron excitability and muscle spasms are regulated by 5-HT2B and 5-HT2C receptor activity. J Neurophysiol. 2011;105(2):731–48. https://doi.org/10.1152/jn.00774.2010.
Nardelli P, Powers R, Cope TC, Rich MM. Increasing motor neuron excitability to treat weakness in sepsis. Ann Neurol. 2017;82(6):961–71. https://doi.org/10.1002/ana.25105.
Article CAS PubMed PubMed Central Google Scholar
Henderson TT, Taylor JL, Thorstensen JR, Kavanagh JJ. Excitatory drive to spinal motoneurones is necessary for serotonin to modulate motoneurone excitability via 5-HT(2) receptors in humans. Eur J Neurosci. 2024;59(1):17–35. https://doi.org/10.1111/ejn.16190.
Article CAS PubMed Google Scholar
Goodlich BI, Del Vecchio A, Horan SA, Kavanagh JJ. Blockade of 5-HT(2) receptors suppresses motor unit firing and estimates of persistent inward currents during voluntary muscle contraction in humans. J Physiol. 2023;601(6):1121–38. https://doi.org/10.1113/jp284164.
Article CAS PubMed Google Scholar
Clar
留言 (0)