Scally B, Burke MR, Bunce D, Delvenne JF. Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol Aging. 2018;71:149–55. https://doi.org/10.1016/J.NEUROBIOLAGING.2018.07.004.
Perinelli A, Assecondi S, Tagliabue CF, Mazza V. Power shift and connectivity changes in healthy aging during resting-state EEG. NeuroImage. 2022;256:119247. https://doi.org/10.1016/j.neuroimage.2022.119247.
Hinault T, Baillet S, Courtney SM. Age-related changes of deep-brain neurophysiological activity. Cereb Cortex. 2023;33(7):3960–8. https://doi.org/10.1093/CERCOR/BHAC319.
Article CAS PubMed Google Scholar
Shafto MA, Tyler LK, Dixon M, Taylor JR, Rowe JB, Cusack R, Calder AJ, Marslen-Wilson WD, Duncan J, Dalgleish T, Henson RN, Brayne C, Matthews FE. Cam-CAN: the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurology. 2014;14(1):1–25. https://doi.org/10.1186/S12883-014-0204-1.
Green E, Shafto MA, Matthews FE, Cam-CAN, White SR. Adult lifespan cognitive variability in the cross-sectional cam-can cohort. Int J Environ Res Public Health. 2015;12(12):15516. https://doi.org/10.3390/IJERPH121215003.
Gómez C, Pérez-Macías JM, Poza J, Fernández A, Hornero R. Spectral changes in spontaneous MEG activity across the lifespan. J Neural Eng. 2013;10(6). https://doi.org/10.1088/1741-2560/10/6/066006.
Stier C, Braun C, Focke NK. Adult lifespan trajectories of neuromagnetic signals and interrelations with cortical thickness. NeuroImage. 2023;278. https://doi.org/10.1016/J.NEUROIMAGE.2023.120275.
Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65(2):413. https://doi.org/10.1103/RevModPhys.65.413.
Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999;96(26):15222–7. https://doi.org/10.1073/PNAS.96.26.15222.
Article PubMed PubMed Central Google Scholar
Baillet S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci. 2017;20(3):327–39. https://doi.org/10.1038/nn.4504.
Article CAS PubMed Google Scholar
Little S, Bonaiuto J, Meyer SS, Lopez J, Bestmann S, Barnes G. Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage. 2018;181:453–60. https://doi.org/10.1016/j.neuroimage.2018.07.030.
Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput. 1994;32(1):35–42. https://doi.org/10.1007/BF02512476.
Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24(Suppl D):5–12.
Belardinelli P, Ortiz E, Barnes G, Noppeney U, Preissl H. Source reconstruction accuracy of MEG and EEG Bayesian inversion approaches. PLoS ONE. 2012;7(12). https://doi.org/10.1371/journal.pone.0051985.
Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, Henson R, Flandin G, Mattout J. Multiple sparse priors for the M/EEG inverse problem. NeuroImage. 2008;39(3):1104–20. https://doi.org/10.1016/j.neuroimage.2007.09.048.
Llinás RR, Ustinin MN. Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization. Front Neural Circuits. 2014;8:75300. https://doi.org/10.3389/FNCIR.2014.00043.
Llinás RR, Ustinin MN, Rykunov SD, Boyko AI, Sychev VV, Walton KD, Rabello GM, Garcia J. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. Front Neurosci. 2015;9(OCT):155316. https://doi.org/10.3389/FNINS.2015.00373.
Ustinin MN, Boyko AI, Rykunov SD. Functional tomography of complex systems using spectral analysis of multichannel measurement data. Pattern Recognit Image Anal. 2023;33(4):1344–74. https://doi.org/10.1134/S1054661823040491.
Llinás RR, Rykunov S, Walton KD, Boyko A, Ustinin M. Splitting of the magnetic encephalogram into «brain» and «non-brain» physiological signals based on the joint analysis of frequency-pattern functional tomograms and magnetic resonance images. Front Neural Circuits. 2022;16:834434. https://doi.org/10.3389/FNCIR.2022.834434.
Article PubMed PubMed Central Google Scholar
Taulu S, Kajola M. Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys. 2005;97(12):1. https://doi.org/10.1063/1.1935742/893620.
Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51(7):1759. https://doi.org/10.1088/0031-9155/51/7/008.
Article CAS PubMed Google Scholar
Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen MS. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2013;7(267):1–13. https://doi.org/10.3389/fnins.2013.00267.
Frigo M, Johnson SG. The design and implementation of fftw3. Proc IEEE. 2005;93(2):216–31. https://doi.org/10.1109/JPROC.2004.840301.
Oostenveld R, Fries P, Maris E, Schoffelen J-M. Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011(1):156869. https://doi.org/10.1155/2011/156869.
Huo Y, Xu Z, Xiong Y, Aboud K, Parvathaneni P, Bao S, Bermudez C, Resnick SM, Cutting LE, Landman BA. 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage. 2019;194:105–19. https://doi.org/10.1016/J.NEUROIMAGE.2019.03.041.
Zhang Z, Zhang H, Zhao L, Chen T, Arık S, Pfister T. Nested hierarchical transformer: towards accurate, data-efficient and interpretable visual understanding. Proc AAAI Conf Artif Intell. 2022;36(3):3417–25. arXiv:2105.12723. https://doi.org/10.1609/AAAI.V36I3.20252.
Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, Murrey B, Myronenko A, Zhao C, Yang D, Nath V, He Y, Xu Z, Hatamizadeh A, Myronenko A, Zhu W, Liu Y, Zheng M, Tang Y, Yang I, Zephyr M, Hashemian B, Alle S, Darestani MZ, Budd C, Modat M, Vercauteren T, Wang G, Li Y, Hu Y, Fu Y, Gorman B, Johnson H, Genereaux B, Erdal BS, Gupta V, Diaz-Pinto A, Dourson A, Maier-Hein L, Jaeger PF, Baumgartner M, Kalpathy-Cramer J, Flores M, Kirby J, Cooper LAD, Roth HR, Xu D, Bericat D, Floca R, Zhou SK, Shuaib H, Farahani K, Maier-Hein KH, Aylward S, Dogra P, Ourselin S, Feng A. MONAI: an open-source framework for deep learning in healthcare. 2022. https://doi.org/10.48550/arXiv.2211.02701. https://arxiv.org/abs/2211.02701v1.
Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987;32(1):11. https://doi.org/10.1088/0031-9155/32/1/004.
Pearson RK. Outliers in process modeling and identification. IEEE Trans Control Syst Technol. 2002;10(1):55–63. https://doi.org/10.1109/87.974338.
留言 (0)