Light buckets and laser beams: mechanisms and applications of photobiomodulation (PBM) therapy

He L, Di D, Chu X, Liu X, Wang Z, Lu J, et al. Photothermal antibacterial materials to promote wound healing. J Controlled Release. 2023;363:180–200.

Article  Google Scholar 

Mester E, Szende B, Gärtner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl). 1968;9(5):621–6.

PubMed  Google Scholar 

Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics. 2015;8(6):489–501.

Article  PubMed  Google Scholar 

De Taboada L, Hamblin MR. Transcranial photobiomodulation treats Alzheimer’s disease in amyloid-β protein precursor transgenic mice. In: Photobiomodulation in the brain [Internet]. Elsevier; 2019 [cited 2023 Nov 6]. p. 207–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128153055000154

Giolo FP, Santos GS, Pacheco VF, Huber SC, Malange KF, Rodrigues BL, et al. Photobiomodulation therapy for osteoarthritis: mechanisms of action. World J Transl Med. 2022;10(3):29–42.

Article  Google Scholar 

Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation therapy on brain: pioneering an innovative approach to revolutionize cognitive dynamics. Cells. 2024 Jun 3;13(11):966.

Sinha G. Trials begin for a new weapon against Parkinson’s: light. Science [Internet]. 2020 Sep 17 [cited 2023 Nov 6]; Available from: https://www.sciencemag.org/news/2020/09/trials-begin-new-weapon-against-parkinson-s-light

Vafaei-Nezhad S, Niknazar S, Payvandi AA, Shirazi Tehrani A, AhmadyRoozbahany N, Ahrabi B, et al. Therapeutic effects of photobiomodulation therapy on multiple sclerosis by regulating the inflammatory process and controlling immune cell activity: a novel promising treatment target. J Lasers Med Sci. 2022;13(1):e32–e32.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, et al. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab. 2017;37(12):3789–802.

Article  PubMed  PubMed Central  Google Scholar 

Jere SW, Houreld NN, Abrahamse H. Photobiomodulation and the expression of genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. J Photochem Photobiol B. 2020;204: 111791.

Article  PubMed  Google Scholar 

de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):348–64.

Article  Google Scholar 

dos Cardoso FS, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the aging brain. Ageing Res Rev. 2021;70:101415.

Article  PubMed  Google Scholar 

Tedford CE, DeLapp S, Jacques S, Anders J. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med. 2015;47(4):312–22.

Article  PubMed  Google Scholar 

dos Cardoso FS, Barrett DW, Wade Z, Gomes da Silva S, Gonzalez-Lima F. Photobiomodulation of cytochrome c oxidase by chronic transcranial laser in young and aged brains. Front Neurosci. 2022;18(16):818005.

Article  Google Scholar 

Saucedo CL, Courtois EC, Wade ZS, Kelley MN, Kheradbin N, Barrett DW, et al. Transcranial laser stimulation: mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimulat. 2021;14(2):440–9.

Article  Google Scholar 

Zhang D, Spielmann A, Wang L, Ding G, Huang F, Gu Q, et al. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res. 2012;28:113–24.

Article  Google Scholar 

Albert ES, Bec JM, Desmadryl G, Chekroud K, Travo C, Gaboyard S, et al. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol. 2012;107(12):3227–34.

Article  PubMed  Google Scholar 

Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol. 2014;32(1):51–82.

Article  PubMed  Google Scholar 

Mullen AC, Orlando DA, Newman JJ, Lovén J, Kumar RM, Bilodeau S, et al. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell. 2011;147(3):565–76.

Article  PubMed  PubMed Central  Google Scholar 

Xi Q, Wang Z, Zaromytidou AI, Zhang XHF, Chow-Tsang LF, Liu JX, et al. A poised chromatin platform for TGF-β access to master regulators. Cell. 2011;147(7):1511–24.

Article  PubMed  PubMed Central  Google Scholar 

Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, et al. Photoactivation of endogenous latent transforming growth factor–β1 directs dental stem cell differentiation for regeneration. Sci Transl Med [Internet]. 2014 May 28 [cited 2023 Oct 26];6(238). Available from: https://www.science.org/doi/https://doi.org/10.1126/scitranslmed.3008234

Epstein JB, Raber-Durlacher JE, Huysmans MC, Schoordijk MCE, Cheng JE, Bensadoun RJ, et al. Photobiomodulation therapy alleviates tissue fibroses associated with chronic graft-versus-host disease: two case reports and putative anti-fibrotic roles of TGF-β. Photomed Laser Surg. 2018;36(2):92–9.

Article  PubMed  Google Scholar 

Moen JM, Morrell CH, Matt MG, Ahmet I, Tagirova S, Davoodi M, et al. Emergence of heartbeat frailty in advanced age I: perspectives from life-long EKG recordings in adult mice. GeroScience. 2022;44(6):2801–30.

Article  PubMed  PubMed Central  Google Scholar 

Ahmet I, Syed SB, Chakir K, Morrell CH, Arany PR, Lakatta EG. The therapeutic effects of long-term photobiomodulation on aging in mice [Internet]. 2023 [cited 2024 Sep 20]. Available from: http://biorxiv.org/lookup/doi/https://doi.org/10.1101/2023.08.05.552116

Syed SB, Ahmet I, Chakir K, Morrell CH, Arany PR, Lakatta EG. Photobiomodulation therapy mitigates cardiovascular aging and improves survival. Lasers Surg Med. 2023;55(3):278–93.

Article  PubMed  Google Scholar 

Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev. 2019;99(1):311–79.

Article  PubMed  Google Scholar 

Lundberg JO, Weitzberg E, Gladwin MT. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.

Article  PubMed  Google Scholar 

Lohr NL, Keszler A, Pratt P, Bienengraber M, Warltier DC, Hogg N. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: Potential role in cardioprotection. J Mol Cell Cardiol. 2009;47(2):256–63.

Article  PubMed  PubMed Central  Google Scholar 

Keszler A, Lindemer B, Weihrauch D, Jones D, Hogg N, Lohr NL. Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radic Biol Med. 2017;113:157–64.

Article  PubMed  PubMed Central  Google Scholar 

Keszler A, Lindemer B, Hogg N, Lohr NL. Ascorbate attenuates red light mediated vasodilation: potential role of S-nitrosothiols. Redox Biol. 2019;20:13–8.

Article  PubMed  Google Scholar 

Weihrauch D, Keszler A, Lindemer B, Krolikowski J, Lohr NL. Red light stimulates vasodilation through extracellular vesicle trafficking. J Photochem Photobiol B. 2021;220: 112212.

Article  PubMed  PubMed Central  Google Scholar 

Keszler A, Lindemer B, Broeckel G, Weihrauch D, Gao Y, Lohr NL. In vivo characterization of a red light-activated vasodilation: a photobiomodulation study. Front Physiol. 2022;2(13): 880158.

Article  Google Scholar 

Schrier SA, Falk MJ. Mitochondrial disorders and the eye. Curr Opin Ophthalmol. 2011;22(5):325–31.

Article  PubMed  PubMed Central  Google Scholar 

Eells JT, Henry MM, Lewandowski MF, Seme MT, Murray TG. Development and characterization of a rodent model of methanol-induced retinal and optic nerve toxicity. Neurotoxicology. 2000;21(3):321–30.

PubMed  Google Scholar 

Eells JT, Henry MM, Summerfelt P, Wong-Riley MTT, Buchmann EV, Kane M, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci. 2003;100(6):3439–44.

Article  PubMed  PubMed Central  Google Scholar 

Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, et al. Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. Sci Rep. 2020;10(1):20382.

Article  PubMed  PubMed Central  Google Scholar 

Nonarath HJ, Hall AE, SenthilKumar G, Abroe B, Eells JT, Liedhegner ES. 670nm photobiomodulation modulates bioenergetics and oxidative stress, in rat Müller cells challenged with high glucose. Madigan M, editor. PLOS ONE. 2021;16(12):e0260968.

Article  PubMed  PubMed Central  Google Scholar 

Kim JE, Glassman AR, Josic K, Melia M, Aiello LP, Baker C, et al. A randomized trial of photobiomodulation therapy for center-involved diabetic macular edema with good visual acuity (Protocol AE). Ophthalmol Retina. 2022;6(4):298–307.

Article  PubMed 

留言 (0)

沒有登入
gif