Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90.
Nguyen-Ky T, Wen P, Li Y. Consciousness and depth of anesthesia assessment based on Bayesian analysis of EEG signals. IEEE Trans Biomed Eng. 2013;60(6):1488–98.
Schmierer T, Li T, Li Y. A novel empirical wavelet SODP and spectral entropy based index for assessing the depth of anaesthesia. Health Inf Sci Syst. 2022;10(1):10.
Siuly S, Li Y, Wen P, Alcin OF. SchizoGoogLeNet: the GoogLeNet-based deep feature extraction design for automatic detection of schizophrenia. Comput Intell Neurosci. 2022;2022(1):1992596.
Izzo J, Andreassen OA, Westlye LT, van der Meer D. The association between hippocampal subfield volumes in mild cognitive impairment and conversion to Alzheimer’s disease. Brain Res. 2020;1728: 146591.
Li Y, Wen P, Powers D, Clark CR. LSB neural network based segmentation of MR brain images. In: IEEE SMC’99 conference proceedings. 1999 IEEE international conference on systems, man, and cybernetics (Cat. No. 99CH37028), 199, vol 6. IEEE; 1999. p. 822–5.
Bashar MR, Li Y, Wen P. Study of EEGs from somatosensory cortex and Alzheimer’s disease sources. Int J Biol Life Sci. 2011;8:2.
Li Y, Chi Z. MR brain image segmentation based on self-organizing map network. Int J Inf Technol. 2005;11(8).
Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB, Griffith EY, Provenzano FA, Schupf N, Manly JJ, Stern Y, et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiol Aging. 2015;36(1):27–32.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Sarki R, Ahmed K, Wang H, Zhang Y, Wang K. Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans Scalable Inf Syst. 2021. https://doi.org/10.4108/eai.16-12-2021.172436.
Pandey D, Wang H, Yin X, Wang K, Zhang Y, Shen J. Automatic breast lesion segmentation in phase preserved DCE-MRIs. Health Inf Sci Syst. 2022;10(1):9.
Wang S-H, Zhou Q, Yang M, Zhang Y-D. ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation. Front Aging Neurosci. 2021;13: 687456.
Zhang Z, Gao L, Jin G, Guo L, Yao Y, Dong L, Han J, The Alzheimer’s Disease NeuroImaging Initiative. THAN: task-driven hierarchical attention network for the diagnosis of mild cognitive impairment and Alzheimer’s disease. Quant Imaging Med Surg. 2021;11(7):3338–54.
Guan H, Liu Y, Yang E, Yap P-T, Shen D, Liu M. Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification. Med Image Anal. 2021;71: 102076.
Hoang GM, Kim U-H, Kim JG. Vision transformers for the prediction of mild cognitive impairment to Alzheimer’s disease progression using mid-sagittal sMRI. Front Aging Neurosci. 2023;15:1102869.
Xing Y, Guan Y, Yang B, Liu J. Classification of sMRI images for Alzheimer’s disease by using neural networks. In: Yu S, Zhang Z, Yuen PC, Han J, Tan T, Guo Y, Lai J, Zhang J, editors. Pattern recognition and computer vision. Cham: Springer; 2022. p. 54–66.
Zhang X, Han L, Zhu W, Sun L, Zhang D. An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE J Biomed Health Inform. 2022;26(11):5289–97.
Bakkouri I, Afdel K, Benois-Pineau J, Catheline G. Recognition of Alzheimer’s disease on sMRI based on 3D multi-scale CNN features and a gated recurrent fusion unit. In: 2019 International conference on content-based multimedia indexing (CBMI), 2019. IEEE; 2019. p. 1–6.
Chen L, Qiao H, Zhu F. Alzheimer’s disease diagnosis with brain structural MRI using multiview-slice attention and 3D convolution neural network. Front Aging Neurosci. 2022;14: 871706.
Liu F, Wang H, Liang S-N, Jin Z, Wei S, Li X. MPS-FFA: a multiplane and multiscale feature fusion attention network for Alzheimer’s disease prediction with structural MRI. Comput Biol Med. 2023;157: 106790.
Wei S, Li Y, Yang W. An adaptive feature fusion network for Alzheimer’s disease prediction. In: Health information science, lecture notes in computer science. Singapore: Springer; 2023. p. 271–82.
Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neurology. 2010;74(3):201–9.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations, 2015.
Han R, Liu Z, Chen CLP. Multi-scale 3D convolution feature-based broad learning system for Alzheimer’s disease diagnosis via MRI images. Appl Soft Comput. 2022;120: 108660.
Hu K, Wang Y, Chen K, Hou L, Zhang X. Multi-scale features extraction from baseline structure MRI for MCI patient classification and ad early diagnosis. Neurocomputing. 2016;175:132–45.
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems. New York: Curran Associates Inc; 2012. p. 25.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Advances in neural information processing systems, 2017, p. 30.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), 2016. IEEE; 2016. p. 770–778.
Banerjee K, Prasad CV, Gupta RR, Vyas K, Anushree H, Mishra B. Exploring alternatives to Softmax function. In: Proceedings of the 2nd international conference on deep learning theory and applications (DeLTA 2021), 2020.
Aljalbout E, Golkov V, Siddiqui Y, Strobel M, Cremers D. Clustering with deep learning: taxonomy and new methods. arXiv preprint; 2018. arXiv:1801.07648.
Liang D, Lin L, Hu H, Zhang Q, Chen Q, lwamoto Y, Han X, Chen Y-W. Combining convolutional and recurrent neural networks for classification of focal liver lesions in multi-phase CT images. In: Medical image computing and computer assisted intervention—MICCAI 2018, 2018. Cham: Springer; 2018. p. 666–75.
Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545–63.
Prechelt L. Early stopping—but when? In: Neural Networks: tricks of the trade, 2022. Springer; 2002. p. 55–69.
Bernerth JB, Aguinis H. A critical review and best-practice recommendations for control variable usage. Pers Psychol. 2016;69(1):229–83.
Nanni L, Brahnam S, Salvatore C, Castiglioni I. Texture descriptors and voxels for the early diagnosis of Alzheimer’s disease. Artif Intell Med. 2019;97:19–26.
Gao X, Shi F, Shen D, Liu M. Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimer’s disease. IEEE J Biomed Health Inform. 2021;26(1):36–43.
Lian C, Liu M, Pan Y, Shen D. Attention-guided hybrid network for dementia diagnosis with structural MR images. IEEE Trans Cybern. 2020;52(4):1992–2003.
Guan H, Wang C, Cheng J, Jing J, Liu T. A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer’s disease. Hum Brain Mapp. 2022;43(2):760–72.
Zhu W, Sun L, Huang J, Han L, Zhang D. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans Med Imaging. 2021;40(9):2354–66.
Salami F, Bozorgi-Amiri A, Hassan GM, Tavakkoli-Moghaddam R, Datta A. Designing a clinical decision support system for Alzheimer’s diagnosis on OASIS-3 data set. Biomed Signal Process Control. 2022;74: 103527.
Islam J, Zhang Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 2018;5:1–14.
Saratxaga CL, Moya I, Picón A, Acosta M, Moreno-Fernandez-de-Leceta A, Garrote E, Bereciartua-Perez A. MRI deep learning-based solution for Alzheimer’s disease prediction. J Pers Med. 2021;11(9):902.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, p. 770–8.
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–74.
Article MathSciNet Google Scholar
Zheng B, Gao A, Huang X, Li Y, Liang D, Long X. A modified 3D EfficientNet for the classification of Alzheimer’s disease using structural magnetic resonance images. IET Image Process. 2023;17(1):77–87.
Mehmood A, Maqsood M, Bashir M, Shuyuan Y. A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sci. 2020;10(2):84.
Tufail AB, Ma Y-K, Zhang Q-N. Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. J Digit Imaging. 2020;33:1073–90.
Möller C, Vrenken H, Jiskoot L, Versteeg A, Barkhof F, Scheltens P, van der Flier WM. Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease. Neurobiol Aging. 2013;34(8):2014–22.
Yang J, Pan P, Song W, Huang R, Li J, Chen K, Gong Q, Zhong J, Shi H, Shang H. Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation. J Neurol Sci. 2012;316(1–2):21–9.
Xia M, Wang J, He Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS ONE. 2013;8(7): e68910.
Sadiq MT, Siuly S, Almogren A, Li Y, Wen P. Efficient novel network and index for alcoholism detection from EEGs. Health Inf Sci Syst. 2023;11(1):27.
Li Y, Wen P, et al. Analysis and classification of EEG signals using a hybrid clustering technique. In: IEEE/ICME international conference on complex medical engineering, 2010. IEEE; 2010. p. 34–9.
留言 (0)