Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification

Das PK, Meher S. An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia. Expert Syst Appl. 2021;183:115311.

Article  MATH  Google Scholar 

Skálová Skálová A, Agaimy A, Bradova M, Poorten VV, Hanna E, Guntinas-Lichius O, Franchi A, Hellquist H, Simpson RHW, Lopéz F, Nuyts S, Chiesa-Estomba C, Ng SP, Homma A, Teng Y, Leivo I, Ferlito A. Molecularly defined sinonasal malignancies: an overview with focus on the current WHO classification and recently described provisional entities. Virchows Arch. 2024;484(6):885–900.

Article  Google Scholar 

Duffield AS, Mullighan CG, Borowitz MJ. International consensus classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch. 2023;482(1):11–26.

Article  MATH  Google Scholar 

Vogado LH, Veras RM, Araujo FH, Silva RR, Aires KR. Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng Appl Artif Intell. 2018;72:415–22.

Article  Google Scholar 

Bukhari M, Yasmin S, Sammad S, El-Latif A, Ahmed A. A deep learning framework for leukemia cancer detection in microscopic blood samples using squeeze and excitation learning. Math Prob Eng. 2022;2022:1–18.

Article  Google Scholar 

Shafique S, Tehsin S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Tech Cancer Res Treat. 2018;17:1533033818802789.

Article  MATH  Google Scholar 

Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96(1):24–33.

Article  MATH  Google Scholar 

Fujita TC, Sousa-Pereira N, Amarante MK, Watanabe MAE. Acute lymphoid leukemia etiopathogenesis. Mol Biol Rep. 2021;48:817–22.

Article  Google Scholar 

Das PK, Sahoo B, Meher S. An efficient detection and classification of acute leukemia using transfer learning and orthogonal softmax layer-based model. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2022

Banik PP, Saha R, Kim KD. An automatic nucleus segmentation and CNN model based classification method of white blood cell. Exp Syst Appl. 2020;149:113211.

Article  MATH  Google Scholar 

Das PK, Diya VA, Meher S, Panda R, Abraham A. A systematic review on recent advancements in deep and machine learning based detection and classification of acute lymphoblastic leukemia. IEEE Access. 2022

Khamael AD, Banks J, Nugyen K, Al-Sabaawi A, Tomeo-Reyes I, Chandran V. Segmentation of white blood cell, nucleus and cytoplasm in digital haematology microscope images: A review-challenges, current and future potential techniques. IEEE Rev Biomed Eng. 2020;14:290–306.

Google Scholar 

Abhishek A, Jha RK, Sinha R, Jha K. Automated detection and classification of leukemia on a subject-independent test dataset using deep transfer learning supported by Grad-CAM visualization. Biomed Signal Process Control. 2023;83:104722.

Article  MATH  Google Scholar 

Arber DA, Campo E, Jaffe ES. Advances in the classification of myeloid and lymphoid neoplasms. Virchows Arch. 2023;482(1):1–9.

Article  MATH  Google Scholar 

Hammad M, Iliyasu AM, Subasi A, Ho ES, Abd El-Latif AA. A multitier deep learning model for arrhythmia detection. IEEE Trans Instrum Meas. 2020;70:1–9.

Article  MATH  Google Scholar 

Agaian S, Madhukar M, Chronopoulos AT. Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Syst J. 2014;8(3):995–1004.

Article  Google Scholar 

Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng. 2017;37(4):637–54.

Article  Google Scholar 

Mercy Bai GP, Perumal V. Taylor political monarch butterfly optimization driven deep learning model for acute lymphoblastic leukemia detection and severity classification using blood smear images. Concurr Comput Pract Exp. 2023;35(2):e7455.

Article  Google Scholar 

Sander B, Campo E, Hsi ED. Chronic lymphocytic leukaemia/small lymphocytic lymphoma and mantle cell lymphoma: from early lesions to transformation. Virchows Arch. 2023;482(1):131–45.

Article  Google Scholar 

Genovese A, Piuri V, Plataniotis KN, Scotti F. DL4ALL: Multi-Task Cross-Dataset Transfer Learning for Acute Lymphoblastic Leukemia Detection. IEEE Access. 2023

Devi TG, Patil N, Rai S, Philipose CS. Gaussian blurring technique for detecting and classifying acute lymphoblastic leukemia cancer cells from microscopic biopsy images. Life. 2023;13(2):348.

Article  Google Scholar 

Maqsood S, Damaševičius R, Shah FM, Maskeliunas R. Detection of macula and recognition of aged-related macular degeneration in retinal fundus images. Comput Inform. 2021;40(5):957–87.

Article  MATH  Google Scholar 

Basavegowda HS, Dagnew G. Deep learning approach for microarray cancer data classification. CAAI Trans Intell Technol. 2020;5(1):22–33.

Article  MATH  Google Scholar 

Fend F, van den Brand M, Groenen PJ, Quintanilla-Martinez L, Bagg A. Diagnostic and prognostic molecular pathology of lymphoid malignancies. Virchows Arch. 2024;484(2):195–214.

Article  Google Scholar 

Lee SH, Yang W, Gocho Y, John A, Rowland L, Smart B, Yang JJ. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat Med. 2023;29(1):170–9.

Article  Google Scholar 

Shaheen M, Khan R, Biswal RR, Ullah M, Khan A, Uddin MI, Waheed A. Acute myeloid leukemia (AML) detection using AlexNet model. Complexity. 2021;2021:1–8.

Article  MATH  Google Scholar 

Anilkumar KK, Manoj VJ, Sagi TM. Automated detection of leukemia by pretrained deep neural networks and transfer learning: a comparison. Med Eng Phys. 2021;98:8–19.

Article  MATH  Google Scholar 

Abhishek A, Jha RK, Sinha R, Jha K. Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomed Signal Process Control. 2022;72:103341.

Article  MATH  Google Scholar 

Iqbal S, Qureshi AN, Li J, Mahmood T. On the analyses of medical images using traditional machine learning techniques and convolutional neural networks. Arch Comput Methods Eng. 2023;30(5):3173–233.

Article  MATH  Google Scholar 

Su H, Zhao D, Elmannai H, Heidari AA, Bourouis S, Wu Z, Chen M. Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization. Comput Biol Med. 2022;146:105618.

Article  Google Scholar 

Qi A, Zhao D, Yu F, Heidari AA, Wu Z, Cai Z, Chen M. Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation. Comput Biol Med. 2022;148:105810.

Article  Google Scholar 

Wu Z, Liu H, Xie J, Xu G, Li G, Lu C. An effective method for the protection of user health topic privacy for health information services. World Wide Web. 2023;26(6):3837–59.

Article  MATH  Google Scholar 

Hu K, Zhao L, Feng S, Zhang S, Zhou Q, Gao X, Guo Y. Colorectal polyp region extraction using saliency detection network with neutrosophic enhancement. Comput Biol Med. 2022;147:105760.

Article  Google Scholar 

Jiang X, Ding Y, Liu M, Wang Y, Li Y, Wu Z. BiFTransNet: a unified and simultaneous segmentation network for gastrointestinal images of CT & MRI. Comput Biol Med. 2023;165:107326.

Article  Google Scholar 

Mei Z, Yu J, Zhang C, Wu B, Yao S, Shi J, Wu Z. Secure multi-dimensional data retrieval with access control and range query in the cloud. Inf Syst. 2024;122:102343.

Article  MATH  Google Scholar 

Wang F, Casalino LP, Khullar D. Deep learning in medicine-promise, progress, and challenges. JAMA Intern Med. 2019;179(3):293–4.

Article  MATH  Google Scholar 

Maqsood S, Damaševičius R, Maskeliūnas R. Hemorrhage detection based on 3D CNN deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients. Sensors. 2021;21(11):3865.

Article  MATH  Google Scholar 

Mohammed ZF, Abdulla AA. An efficient CAD system for ALL cell identification from microscopic blood images. Multi Tools Appl. 2021;80(4):6355–68.

Article  MATH  Google Scholar 

Das PK, Nayak B, Meher S. A lightweight deep learning system for automatic detection of blood cancer. Measurement. 2022;191:110762.

Article  MATH  Google Scholar 

Abir WH, Uddin MF, Khanam FR, Tazin T, Khan MM, Masud M, Aljahdali S. Explainable AI in diagnosing and anticipating leukemia using transfer learning method. Comput Intell Neurosci. 2022;2022:5140148.

Article  Google Scholar 

Karar ME, Alotaibi B, Alotaibi M. Intelligent medical IoT-enabled automated microscopic image diagnosis of acute blood cancers. Sensors. 2022;22(6):2348.

Article  MATH  Google Scholar 

Baig R, Rehman A, Almuhaimeed A, Alzahrani A, Rauf HT. Detecting malignant leukemia cells using microscopic blood smear images: a deep learning approach. Appl Sci. 2022;12(13):6317.

Article  Google Scholar 

Habibzadeh M, Jannesari M, Rezaei Z, Baharvand H, Totonchi M. Automatic white blood cell classification using pre-trained deep learning models: Resnet and inception. In Tenth international conference on machine vision (ICMV 2017) (Vol. 10696, pp. 274-81). SPIE. 2018

留言 (0)

沒有登入
gif