Recent trends in scientific research in chest radiology: What to do or not to do? That is the critical question in research

Kakinuma R, Moriyama N, Muramatsu Y, Gomi S, Suzuki M, Nagasawa H, et al. Ultra-high-resolution computed tomography of the lung: image quality of a prototype scanner. PLoS ONE. 2015;10(9): e0137165.

Article  PubMed  PubMed Central  Google Scholar 

Tsukagoshi S, Ota T, Fujii M, Kazama M, Okumura M, Johkoh T. Improvement of spatial resolution in the longitudinal direction for isotropic imaging in helical CT. Phys Med Biol. 2007;52(3):791–801.

Article  PubMed  Google Scholar 

Yanagawa M, Hata A, Honda O, Kikuchi N, Miyata T, Uranishi A, et al. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs. Eur Radiol. 2018;28(12):5060–8.

Article  PubMed  PubMed Central  Google Scholar 

Miyata T, Yanagawa M, Hata A, Honda O, Yoshida Y, Kikuchi N, et al. Influence of field of view size on image quality: ultra-high-resolution CT vs. conventional high-resolution CT. Eur Radiol. 2020;30(6):3324–33.

Article  PubMed  PubMed Central  Google Scholar 

Hata A, Yanagawa M, Honda O, Kikuchi N, Miyata T, Tsukagoshi S, et al. Effect of matrix size on the image quality of ultra-high-resolution CT of the lung: comparison of 512 x 512, 1024 x 1024, and 2048 x 2048. Acad Radiol. 2018;25(7):869–76.

Article  PubMed  Google Scholar 

Yanagawa M, Tsubamoto M, Satoh Y, Hata A, Miyata T, Yoshida Y, et al. Lung adenocarcinoma at CT with 0.25-mm section thickness and a 2048 matrix: high-spatial-resolution imaging for predicting invasiveness. Radiology. 2020;297(2):462–71.

Article  PubMed  Google Scholar 

Ninomiya K, Yanagawa M, Tsubamoto M, Sato Y, Suzuki Y, Hata A, et al. Prediction of solid and micropapillary components in lung invasive adenocarcinoma: radiomics analysis from high-spatial-resolution CT data with 1024 matrix. Jpn J Radiol. 2024;42(6):590–8.

Article  PubMed  PubMed Central  Google Scholar 

Egashira R, Jacob J, Kokosi MA, Brun AL, Rice A, Nicholson AG, et al. Diffuse pulmonary ossification in fibrosing interstitial lung diseases: prevalence and associations. Radiology. 2017;284(1):255–63.

Article  PubMed  Google Scholar 

Hata A, Yanagawa M, Tsubamoto M, Doi S, Yoshida Y, Miyata T, et al. Detectability of pulmonary ossifications in fibrotic lung on ultra-high-resolution CT using 2048 matrix size and 0.25-mm slice thickness. Sci Rep. 2021;11(1):15119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging. Radiol Med. 2023;128(10):1236–49.

Article  PubMed  PubMed Central  Google Scholar 

Koetzier LR, Mastrodicasa D, Szczykutowicz TP, van der Werf NR, Wang AS, Sandfort V, et al. Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology. 2023;306(3): e221257.

Article  PubMed  Google Scholar 

Nakamoto A, Onishi H, Ota T, Honda T, Tsuboyama T, Fukui H, et al. Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures. Jpn J Radiol. 2024. https://doi.org/10.1007/s11604-024-01685-2.

Article  PubMed  PubMed Central  Google Scholar 

Takafuji M, Kitagawa K, Mizutani S, Hamaguchi A, Kisou R, Iio K, et al. Super-resolution deep learning reconstruction for improved image quality of coronary CT angiography. Radiol Cardiothorac Imaging. 2023;5(4): e230085.

Article  PubMed  PubMed Central  Google Scholar 

Orii M, Sone M, Osaki T, Ueyama Y, Chiba T, Sasaki T, et al. Super-resolution deep learning reconstruction at coronary computed tomography angiography to evaluate the coronary arteries and in-stent lumen: an initial experience. BMC Med Imaging. 2023;23(1):171.

Article  PubMed  PubMed Central  Google Scholar 

McCollough CH, Rajendran K, Baffour FI, Diehn FE, Ferrero A, Glazebrook KN, et al. Clinical applications of photon counting detector CT. Eur Radiol. 2023;33(8):5309–20.

Article  PubMed  PubMed Central  Google Scholar 

Nakamura Y, Higaki T, Kondo S, Kawashita I, Takahashi I, Awai K. An introduction to photon-counting detector CT (PCD CT) for radiologists. Jpn J Radiol. 2023;41(3):266–82.

PubMed  Google Scholar 

Hata A, Yanagawa M, Ninomiya K, Kikuchi N, Kurashige M, Masuda C, et al. Photon-counting detector CT radiological-histological correlation in cadaveric human lung nodules and airways. Invest Radiol. 2024. https://doi.org/10.1097/RLI.0000000000001117.

Article  PubMed  Google Scholar 

McCollough CH, Rajendran K, Leng S. Standardization and quantitative imaging with photon-counting detector CT. Invest Radiol. 2023;58(7):451–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hertel A, Tharmaseelan H, Rotkopf LT, Norenberg D, Riffel P, Nikolaou K, et al. Phantom-based radiomics feature test-retest stability analysis on photon-counting detector CT. Eur Radiol. 2023;33(7):4905–14.

Article  PubMed  PubMed Central  Google Scholar 

Si-Mohamed SA, Sigovan M, Hsu JC, Tatard-Leitman V, Chalabreysse L, Naha PC, et al. In vivo molecular k-edge imaging of atherosclerotic plaque using photon-counting CT. Radiology. 2021;300(1):98–107.

Article  PubMed  Google Scholar 

Gang GJ, Zbijewski W, Mahesh M, Thawait G, Packard N, Yorkston J, et al. Image quality and dose for a multisource cone-beam CT extremity scanner. Med Phys. 2018;45(1):144–55.

Article  PubMed  Google Scholar 

Jinzaki M, Yamada Y, Nagura T, Nakahara T, Yokoyama Y, Narita K, et al. Development of upright computed tomography with area detector for whole-body scans: phantom study, efficacy on workflow, effect of gravity on human body, and potential clinical impact. Invest Radiol. 2020;55(2):73–83.

Article  PubMed  Google Scholar 

Yamada Y, Yamada M, Yokoyama Y, Tanabe A, Matsuoka S, Niijima Y, et al. Differences in lung and lobe volumes between supine and standing positions scanned with conventional and newly developed 320-detector-row upright CT: intra-individual comparison. Respiration. 2020;99(7):598–605.

Article  PubMed  Google Scholar 

Matsumoto S, Yamada Y, Yamada M, Chubachi S, Yokoyama Y, Matsuoka S, et al. Difference in the airway luminal area between the standing and supine positions using upright and conventional computed tomography. Clin Anat. 2021;34(8):1150–6.

Article  PubMed  Google Scholar 

Yamada Y, Yamada M, Chubachi S, Yokoyama Y, Matsuoka S, Tanabe A, et al. Comparison of inspiratory and expiratory lung and lobe volumes among supine, standing, and sitting positions using conventional and upright CT. Sci Rep. 2020;10(1):16203.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norimatsu T, Nakahara T, Yamada Y, Yokoyama Y, Yamada M, Narita K, et al. Anatomical cardiac and electrocardiographic axes correlate in both upright and supine positions: an upright/supine CT study. Sci Rep. 2023;13(1):18170.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narita K, Yamada Y, Yamada M, Yokoyama Y, Nakahara T, Jinzaki M. Pelvic floor morphology in the standing position using upright computed tomography: age and sex differences. Int Urogynecol J. 2020;31(11):2387–93.

Article  PubMed  Google Scholar 

Fujita N, Yagi M, Yamada Y, Yokoyama Y, Yamada M, Watanabe K, et al. Changes in the lumbar intervertebral foramen between supine and standing posture in patients with adult spinal deformity: a study with upright computed tomography. Skeletal Radiol. 2023;52(2):215–24.

Article  PubMed  Google Scholar 

Kaneda K, Harato K, Oki S, Yamada Y, Nakamura M, Nagura T, et al. Increase in tibial internal rotation due to weight-bearing is a key feature to diagnose early-stage knee osteoarthritis: a study with upright computed tomography. BMC Musculoskelet Disord. 2022;23(1):253.

Article  PubMed  PubMed Central  Google Scholar 

Yokoyama Y, Yamada Y, Kosugi K, Yamada M, Narita K, Nakahara T, et al. Effect of gravity on brain structure as indicated on upright computed tomography. Sci Rep. 2021;11(1):392.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamada Y, Yamada M, Chubachi S, Yokoyama Y, Matsuoka S, Tanabe A, et al. Comparison of inspiratory and expiratory airway volumes and luminal areas among standing, sitting, and supine positions using upright and conventional CT. Sci Rep. 2022;12(1):21315.

留言 (0)

沒有登入
gif