Class III Phosphatidylinositol-3 Kinase/Vacuolar Protein Sorting 34 in Cardiovascular Health and Disease

Jagannathan R, Patel SA, Ali MK, Narayan KMV. Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors. Curr Diab Rep. 2019;19(7):44. https://doi.org/10.1007/s11892-019-1161-2.

Article  PubMed  Google Scholar 

Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22. https://doi.org/10.1016/s0140-6736(20)30925-9

Mendis S, Puska P, Norrving B editors, & Organization WH (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization.

Goncharova EA, Kudryashova TV, de Jesus Perez VA, Rafikova O. UnWNTing the Heart: Targeting WNT Signaling in Pulmonary Arterial Hypertension. Circ Res. 2023;132(11):1486–8. https://doi.org/10.1161/CIRCRESAHA.123.322912.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudryashova TV, Dabral S, Nayakanti S, Ray A, Goncharov DA, Avolio T, … Goncharova EA. Noncanonical HIPPO/MST Signaling via BUB3 and FOXO Drives Pulmonary Vascular Cell Growth and Survival. Circ Res. 2022;130(5):760–78. https://doi.org/10.1161/CIRCRESAHA.121.319100

Kudryashova TV, Goncharov DA, Pena A, Kelly N, Vanderpool R, Baust J, … Goncharova EA. HIPPO-Integrin-linked Kinase Cross-Talk Controls Self-Sustaining Proliferation and Survival in Pulmonary Hypertension. Am J Respir Crit Care Med. 2016;194(7):866–77. https://doi.org/10.1164/rccm.201510-2003OC

Goncharov DA, Kudryashova TV, Ziai H, Ihida-Stansbury K, DeLisser H, Krymskaya VP, … Goncharova EA. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation. 2014;129(8):864–74. https://doi.org/10.1161/CIRCULATIONAHA.113.004581

Shen Y, Goncharov DA, Pena A, Baust J, Chavez Barragan A, Ray A, … Goncharova EA. Cross-talk between TSC2 and the extracellular matrix controls pulmonary vascular proliferation and pulmonary hypertension. Sci Signal. 2022;15(763):eabn2743. https://doi.org/10.1126/scisignal.abn2743

Mohan N, Shen Y, Dokmanovic M, Endo Y, Hirsch DS, Wu WJ. VPS34 regulates TSC1/TSC2 heterodimer to mediate RheB and mTORC1/S6K1 activation and cellular transformation. Oncotarget. 2016;7(32):52239.

Article  PubMed  PubMed Central  Google Scholar 

Guignabert C, Savale L, Boucly A, Thuillet R, Tu L, Ottaviani M, … Humbert M. Serum and Pulmonary Expression Profiles of the Activin Signaling System in Pulmonary Arterial Hypertension. Circulation. 2023;147(24):1809–22. https://doi.org/10.1161/CIRCULATIONAHA.122.061501

Kang C. Sotatercept: First Approval. Drugs. 2024;84(7):857–62. https://doi.org/10.1007/s40265-024-02058-9.

Article  CAS  PubMed  Google Scholar 

Jean S, Kiger AA. Classes of phosphoinositide 3-kinases at a glance. J Cell Sci. 2014;127(Pt 5):923–8. https://doi.org/10.1242/jcs.093773.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol. 2019;20(9):515–34. https://doi.org/10.1038/s41580-019-0129-z.

Article  CAS  PubMed  Google Scholar 

Babicheva A, Makino A, Yuan JX. mTOR Signaling in Pulmonary Vascular Disease: Pathogenic Role and Therapeutic Target. Int J Mol Sci. 2021;22(4). https://doi.org/10.3390/ijms22042144

Ghigo A, Laffargue M, Li M, Hirsch E. PI3K and Calcium Signaling in Cardiovascular Disease. Circ Res. 2017;121(3):282–92. https://doi.org/10.1161/circresaha.117.310183.

Article  CAS  PubMed  Google Scholar 

Yu M, Chen J, Xu Z, Yang B, He Q, Luo P, … Yang X. Development and safety of PI3K inhibitors in cancer. Arch Toxicol. 2023;97(3):635–50. https://doi.org/10.1007/s00204-023-03440-4

Hanker AB, Kaklamani V, Arteaga CL. Challenges for the clinical development of PI3K inhibitors: Strategies to improve their impact in solid tumors. Cancer Discov. 2019;9(4):482–91. https://doi.org/10.1158/2159-8290.CD-18-1175.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunnery SE, Mayer IA. Management of toxicity to isoform α-specific PI3K inhibitors. Ann Oncol. 2019;30:x21-6. https://doi.org/10.1093/annonc/mdz440.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao C, He X, Ouyang F, Zhang Z, Shen G, Wu M, … REC-CAGEFREE I Investigators. Drug-coated balloon angioplasty with rescue stenting versus intended stenting for the treatment of patients with de novo coronary artery lesions (REC-CAGEFREE I): an open-label, randomised, non-inferiority trial. Lancet. 2024;404(10457):1040–50. https://doi.org/10.1016/S0140-6736(24)01594-0

Shen Y, Goncharov D, Jiang L, Lin D, Avolio T, Okorie E, Mora AL, Saiyed A, Kudryashova TV, Goncharova EA. Vps34 Is Up-regulated and promotes proliferation and survival of smooth muscle cells in pulmonary arterial hypertension. InD27. CASTRO: CELL SURVIVAL, ORGANELLES, AND VESICLES IN THE PULMONARY CIRCULATION. American Thoracic Society; 2022. pp. A5186–A5186.

Yao Y, Li H, Da X, He Z, Tang B, Li Y, … Wang QK. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension. Pulm Pharmacol Ther. 2019;55:38–49. https://doi.org/10.1016/j.pupt.2019.01.007

Kimura H, Eguchi S, Sasaki J, Kuba K, Nakanishi H, Takasuga S, … Sasaki T. Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy. JCI Insight. 2017;2(1):e89462. https://doi.org/10.1172/jci.insight.89462

Jaber N, Zong WX. Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann N Y Acad Sci. 2013;1280:48–51. https://doi.org/10.1111/nyas.12026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu P, Zhang Y, Li C, Li Y, Jiang S, Zhang X, … Li L. Class III PI3K-mediated prolonged activation of autophagy plays a critical role in the transition of cardiac hypertrophy to heart failure. J Cell Mol Med. 2015;19(7):1710–9. https://doi.org/10.1111/jcmm.12547

Liu Y, Hu M, Luo D, Yue M, Wang S, Chen X, … Hu X. Class III PI3K positively regulates platelet activation and thrombosis via PI (3) P-directed function of NADPH oxidase. Arterioscler Thromb Vasc Biol. 2017;37(11):2075–86.

Valet C, Levade M, Chicanne G, Bilanges B, Cabou C, Viaud J, … Severin S. A dual role for the class III PI3K, Vps34, in platelet production and thrombus growth. Blood. 2017;130(18):2032–42. https://doi.org/10.1182/blood-2017-04-781641

Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, … Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem. 2023;38(1):2237209. https://doi.org/10.1080/14756366.2023.2237209

Thibault B, Ramos-Delgado F, Guillermet-Guibert J. Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers. 2023;15(3):784. https://doi.org/10.3390/cancers15030784.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amzel LM, Huang C-H, Mandelker D, Lengauer C, Gabelli SB, Vogelstein B. Structural comparisons of class I phosphoinositide 3-kinases. Nat Rev Cancer. 2008;8(9):665–9. https://doi.org/10.1038/nrc2443.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koch PA, Dornan GL, Hessenberger M, Haucke V. The molecular mechanisms mediating class II PI 3-kinase function in cell physiology. FEBS J. 2021;288(24):7025–42. https://doi.org/10.1111/febs.15692.

Article  CAS  PubMed  Google Scholar 

Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, Williams RL. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science. 2010;327(5973):1638–42. https://doi.org/10.1126/science.1184429.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohashi Y, Tremel S, Williams RL. VPS34 complexes from a structural perspective. J Lipid Res. 2019;60(2):229–41. https://doi.org/10.1194/jlr.R089490.

Article  CAS  PubMed  Google Scholar 

Hu DX, Patel S, Chen H, Wang S, Staben ST, Dimitrova YN,… Siu M. Structure-Based Design of Potent, Selective, and Orally Bioavailable VPS34 Kinase Inhibitors. J Med Chem. 2022;65(17):11500–12. https://doi.org/10.1021/acs.jmedchem.1c01180

Su H, Liu W. PIK3C3/VPS34 control by acetylation. Autophagy. 2018;14(6):1086–7. https://doi.org/10.1080/15548627.2017.1385676.

Article  CAS  PubMed  Google Scholar 

Stjepanovic G, Baskaran S, Lin MG, Hurley JH. Vps34 Kinase Domain Dynamics Regulate the Autophagic PI 3-Kinase Complex. Mol Cell. 2017;67(3):528-34.e3. https://doi.org/10.1016/j.molcel.2017.07.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat-Carotta S, … Keays DA. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21(2):207–17. https://doi.org/10.1038/s41593-017-0053-5

Wang W, Li J, Tan J, Wang M, Yang J, Zhang ZM, … Zhou Q. Endonuclease G promotes autophagy by suppressing mTOR signaling and activating the DNA damage response. Nat Commun. 2021;12(1):476. https://doi.org/10.1038/s41467-020-20780-2

Yoon MS. Vps34 and PLD1 take center stage in nutrient signaling: their dual roles in regulating autophagy. Cell Commun Signal. 2015;13:44. https://doi.org/10.1186/s12964-015-0122-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, … Yuan J. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell. 2010;38(4):500–11. https://doi.org/10.1016/j.molcel.2010.05.009

Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, … Guan KL. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 2013;152(1–2):290–303. https://doi.org/10.1016/j.cell.2012.12.016

Hong-Brown LQ, Brown CR, Navaratnarajah M, Lang CH. FoxO1-AMPK-ULK1 Regulates Ethanol-Induced Autophagy in Muscle by Enhanced ATG14 Association with the BECN1-PIK3C3 Complex. Alcohol Clin Exp Res. 2017;41(5):895–910. https://doi.org/10.1111/acer.13377.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenberg-Lerner A, Kimchi A. PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ. 2012;19(5):788–97. https://doi.org/10.1038/cdd.2011.149.

Article  CAS  PubMed  Google Scholar 

Su H, Yang F, Wang Q, Shen Q, Huang J, Peng C, … Liu W. VPS34 Acetylation Controls Its Lipid Kinase Activity and the Initiation of Canonical and Non-canonical Autophagy. Mol Cell. 2017;67(6):907–21.e7. https://doi.org/10.1016/j.molcel.2017.07.024

Liu J, Li M, Li L, Chen S, Wang X. Ubiquitination of the PI3-kinase VPS-34 promotes VPS-34 stability and phagosome maturation. J Cell Biol. 2018;217(1):347–60. https://doi.org/10.1083/jcb.201705116.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif