Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1–464.
Liu Z, Chen J, Cheng L, Li H, Liu S, Lou H, et al. Chinese society of allergy and Chinese society of otorhinolaryngology-head and neck surgery guideline for chronic rhinosinusitis. Allergy Asthma Immunol Res. 2020;12(2):176–237.
Article PubMed PubMed Central Google Scholar
Khairuddin NK, Salina H, Gendeh BS, Wan Hamizan AK, Lund VJ. Quality of life and recurrence of disease in patients with eosinophilic and non-eosinophilic 1 chronic rhinosinusitis with nasal polyposis. Med J Malaysia. 2018;73(1):1–6.
Chen S, Zhou A, Emmanuel B, Garcia D, Rosta E. Systematic literature review of humanistic and economic burdens of chronic rhinosinusitis with nasal polyposis. Curr Med Res Opin. 2020;36(11):1913–26.
Patt M, Gysi J, Faresse N, Cidlowski JA, Odermatt A. Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Mol Cell Endocrinol. 2020;518:110873.
Article CAS PubMed PubMed Central Google Scholar
Pazdrak K, Straub C, Maroto R, Stafford S, White WI, Calhoun WJ, et al. Cytokine-induced glucocorticoid resistance from eosinophil activation: protein phosphatase 5 modulation of glucocorticoid receptor phosphorylation and signaling. J Immunol. 2016;197(10):3782–91.
Article CAS PubMed Google Scholar
Zhang YY, Lou HF, Wang CS, Zhang L. [Mechanisms underlying glucocorticoid resistance in chronic rhinosinusitis with nasal polyps]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018;53(2):154–60.
D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.
Article CAS PubMed Google Scholar
Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, et al. Structural mechanism for gsdmd targeting by autoprocessed caspases in pyroptosis. Cell. 2020;180(5):941–e955920.
Article CAS PubMed Google Scholar
Liu J, Wang Y, Meng H, Yu J, Lu H, Li W, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis. J Clin Periodontol. 2019;46(9):894–907.
Article CAS PubMed Google Scholar
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 2022;19(9):971–92.
Article CAS PubMed PubMed Central Google Scholar
Shen JC, Chen B, Cohen NA. Keratinocyte chemoattractant (interleukin-8) regulation of sinonasal cilia function in a murine model. Int Forum Allergy Rhinol. 2012;2(1):75–9.
Wen W, Liu W, Zhang L, Bai J, Fan Y, Xia W, et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol. 2012;129(6):1522–e15281525.
Article CAS PubMed Google Scholar
Liao B, Liu JX, Li ZY, Zhen Z, Cao PP, Yao Y, et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy. 2018;73(7):1459–69.
Article CAS PubMed Google Scholar
Zhang T, Zhou Y, You B, You Y, Yan Y, Zhang J, et al. miR-30a-5p inhibits epithelial-to-mesenchymal transition by targeting CDK6 in nasal polyps. Am J Rhinol Allergy. 2021;35(2):152–63.
Zhou Y, Zhang T, Yan Y, You B, You Y, Zhang W, et al. MicroRNA-223-3p regulates allergic in fl ammation by targeting INPP4A. Braz J Otorhinolaryngol. 2021;87(5):591–600.
Zhang W, Zhang T, Yan Y, Zhang J, Zhou Y, Pei Y, et al. Exosomal mir-22-3p derived from chronic rhinosinusitis with nasal polyps regulates vascular permeability by targeting VE-cadherin. Biomed Res Int. 2020;2020:1237678.
Article PubMed PubMed Central Google Scholar
You B, Zhang T, Zhang W, Pei Y, Huang D, Lei Y, et al. IGFBP2 derived from PO-MSCs promote epithelial barrier destruction by activating FAK signaling in nasal polyps. iScience. 2023;26(3):106151.
Article CAS PubMed PubMed Central Google Scholar
Tsuda T, Nishide M, Maeda Y, Hayama Y, Koyama S, Nojima S, et al. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol. 2020;145(3):843–e854844.
Article CAS PubMed Google Scholar
Lee M, Kim DW, Khalmuratova R, Shin SH, Kim YM, Han DH, et al. The IFN-gamma-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition. Mucosal Immunol. 2019;12(3):601–11.
Article CAS PubMed Google Scholar
Kim Y, Hwang S, Khalmuratova R, Kang S, Lee M, Song Y, et al. Alpha-helical cell-penetrating peptide-mediated nasal delivery of resveratrol for inhibition of epithelial-to-mesenchymal transition. J Control Release. 2020;317:181–94.
Article CAS PubMed Google Scholar
Delemarre T, Holtappels G, De Ruyck N, Zhang N, Nauwynck H, Bachert C, et al. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2021;147(1):179–e188172.
Article CAS PubMed Google Scholar
Subspecialty Group of Rhinology, EBoCJoOH, Neck S. Subspecialty group of rhinology SoOH, neck surgery CMA. [Chinese guidelines for diagnosis and treatment of chronic rhinosinusitis (2018)]. Zhonghua Er Bi Yan Hou Tou Jing Wai. Ke Za Zhi. 2019;54(2):81–100.
Milara J, Morell A, Ballester B, Armengot M, Morcillo E, Cortijo J. MUC4 impairs the anti-inflammatory effects of corticosteroids in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;139(3):855–e862813.
Article CAS PubMed Google Scholar
Hong H, Chen F, Sun Y, Yang Q, Gao W, Cao Y, et al. Nasal IL-25 predicts the response to oral corticosteroids in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2018;141(5):1890–2.
Article CAS PubMed Google Scholar
Yang Y, Chen H, Zhong J, Shen L, Zheng X. Role of NLRP3 inflammasome on different phenotypes of chronic rhinosinusitis. Am J Rhinol Allergy. 2022;36(5):607–14.
Li Y, Zhang YN, Chang LH, Huang WQ, Wu HT, Wu XF, et al. [Effects and clinical significance of NLRP3 inflammasome activated by IL-17A in CRSwNP]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2023;58(7):690–8.
Lin H, Li Z, Lin D, Zheng C, Zhang W. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation. 2016;39(6):2045–52.
Article CAS PubMed Google Scholar
Li Y, Chang LH, Huang WQ, Bao HW, Li X, Chen XH, et al. IL-17A mediates pyroptosis via the ERK pathway and contributes to steroid resistance in CRSwNP. J Allergy Clin Immunol. 2022;150(2):337–51.
Article CAS PubMed Google Scholar
Kook JH, Kim HJ, Kim KW, Park SJ, Kim TH, Lim SH, et al. The expression of 11beta-hydroxysteroid dehydrogenase type 1 and 2 in nasal polyp-derived epithelial cells and its possible contribution to glucocorticoid activation in nasal polyp. Am J Rhinol Allergy. 2015;29(4):246–50.
Liao B, Cao PP, Zeng M, Zhen Z, Wang H, Zhang YN, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2015;70(9):1169–80.
留言 (0)