IL-8 promotes pyroptosis through ERK pathway and mediates glucocorticoid resistance in chronic rhinosinusitis with nasal polyps

Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1–464.

PubMed  Google Scholar 

Liu Z, Chen J, Cheng L, Li H, Liu S, Lou H, et al. Chinese society of allergy and Chinese society of otorhinolaryngology-head and neck surgery guideline for chronic rhinosinusitis. Allergy Asthma Immunol Res. 2020;12(2):176–237.

Article  PubMed  PubMed Central  Google Scholar 

Khairuddin NK, Salina H, Gendeh BS, Wan Hamizan AK, Lund VJ. Quality of life and recurrence of disease in patients with eosinophilic and non-eosinophilic 1 chronic rhinosinusitis with nasal polyposis. Med J Malaysia. 2018;73(1):1–6.

CAS  PubMed  Google Scholar 

Chen S, Zhou A, Emmanuel B, Garcia D, Rosta E. Systematic literature review of humanistic and economic burdens of chronic rhinosinusitis with nasal polyposis. Curr Med Res Opin. 2020;36(11):1913–26.

Article  PubMed  Google Scholar 

Patt M, Gysi J, Faresse N, Cidlowski JA, Odermatt A. Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Mol Cell Endocrinol. 2020;518:110873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pazdrak K, Straub C, Maroto R, Stafford S, White WI, Calhoun WJ, et al. Cytokine-induced glucocorticoid resistance from eosinophil activation: protein phosphatase 5 modulation of glucocorticoid receptor phosphorylation and signaling. J Immunol. 2016;197(10):3782–91.

Article  CAS  PubMed  Google Scholar 

Zhang YY, Lou HF, Wang CS, Zhang L. [Mechanisms underlying glucocorticoid resistance in chronic rhinosinusitis with nasal polyps]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018;53(2):154–60.

CAS  PubMed  Google Scholar 

D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.

Article  PubMed  Google Scholar 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

Article  CAS  PubMed  Google Scholar 

Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, et al. Structural mechanism for gsdmd targeting by autoprocessed caspases in pyroptosis. Cell. 2020;180(5):941–e955920.

Article  CAS  PubMed  Google Scholar 

Liu J, Wang Y, Meng H, Yu J, Lu H, Li W, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis. J Clin Periodontol. 2019;46(9):894–907.

Article  CAS  PubMed  Google Scholar 

Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 2022;19(9):971–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen JC, Chen B, Cohen NA. Keratinocyte chemoattractant (interleukin-8) regulation of sinonasal cilia function in a murine model. Int Forum Allergy Rhinol. 2012;2(1):75–9.

Article  PubMed  Google Scholar 

Wen W, Liu W, Zhang L, Bai J, Fan Y, Xia W, et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol. 2012;129(6):1522–e15281525.

Article  CAS  PubMed  Google Scholar 

Liao B, Liu JX, Li ZY, Zhen Z, Cao PP, Yao Y, et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy. 2018;73(7):1459–69.

Article  CAS  PubMed  Google Scholar 

Zhang T, Zhou Y, You B, You Y, Yan Y, Zhang J, et al. miR-30a-5p inhibits epithelial-to-mesenchymal transition by targeting CDK6 in nasal polyps. Am J Rhinol Allergy. 2021;35(2):152–63.

Article  PubMed  Google Scholar 

Zhou Y, Zhang T, Yan Y, You B, You Y, Zhang W, et al. MicroRNA-223-3p regulates allergic in fl ammation by targeting INPP4A. Braz J Otorhinolaryngol. 2021;87(5):591–600.

Article  PubMed  Google Scholar 

Zhang W, Zhang T, Yan Y, Zhang J, Zhou Y, Pei Y, et al. Exosomal mir-22-3p derived from chronic rhinosinusitis with nasal polyps regulates vascular permeability by targeting VE-cadherin. Biomed Res Int. 2020;2020:1237678.

Article  PubMed  PubMed Central  Google Scholar 

You B, Zhang T, Zhang W, Pei Y, Huang D, Lei Y, et al. IGFBP2 derived from PO-MSCs promote epithelial barrier destruction by activating FAK signaling in nasal polyps. iScience. 2023;26(3):106151.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsuda T, Nishide M, Maeda Y, Hayama Y, Koyama S, Nojima S, et al. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol. 2020;145(3):843–e854844.

Article  CAS  PubMed  Google Scholar 

Lee M, Kim DW, Khalmuratova R, Shin SH, Kim YM, Han DH, et al. The IFN-gamma-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition. Mucosal Immunol. 2019;12(3):601–11.

Article  CAS  PubMed  Google Scholar 

Kim Y, Hwang S, Khalmuratova R, Kang S, Lee M, Song Y, et al. Alpha-helical cell-penetrating peptide-mediated nasal delivery of resveratrol for inhibition of epithelial-to-mesenchymal transition. J Control Release. 2020;317:181–94.

Article  CAS  PubMed  Google Scholar 

Delemarre T, Holtappels G, De Ruyck N, Zhang N, Nauwynck H, Bachert C, et al. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2021;147(1):179–e188172.

Article  CAS  PubMed  Google Scholar 

Subspecialty Group of Rhinology, EBoCJoOH, Neck S. Subspecialty group of rhinology SoOH, neck surgery CMA. [Chinese guidelines for diagnosis and treatment of chronic rhinosinusitis (2018)]. Zhonghua Er Bi Yan Hou Tou Jing Wai. Ke Za Zhi. 2019;54(2):81–100.

Google Scholar 

Milara J, Morell A, Ballester B, Armengot M, Morcillo E, Cortijo J. MUC4 impairs the anti-inflammatory effects of corticosteroids in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;139(3):855–e862813.

Article  CAS  PubMed  Google Scholar 

Hong H, Chen F, Sun Y, Yang Q, Gao W, Cao Y, et al. Nasal IL-25 predicts the response to oral corticosteroids in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2018;141(5):1890–2.

Article  CAS  PubMed  Google Scholar 

Yang Y, Chen H, Zhong J, Shen L, Zheng X. Role of NLRP3 inflammasome on different phenotypes of chronic rhinosinusitis. Am J Rhinol Allergy. 2022;36(5):607–14.

Article  PubMed  Google Scholar 

Li Y, Zhang YN, Chang LH, Huang WQ, Wu HT, Wu XF, et al. [Effects and clinical significance of NLRP3 inflammasome activated by IL-17A in CRSwNP]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2023;58(7):690–8.

CAS  PubMed  Google Scholar 

Lin H, Li Z, Lin D, Zheng C, Zhang W. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Inflammation. 2016;39(6):2045–52.

Article  CAS  PubMed  Google Scholar 

Li Y, Chang LH, Huang WQ, Bao HW, Li X, Chen XH, et al. IL-17A mediates pyroptosis via the ERK pathway and contributes to steroid resistance in CRSwNP. J Allergy Clin Immunol. 2022;150(2):337–51.

Article  CAS  PubMed  Google Scholar 

Kook JH, Kim HJ, Kim KW, Park SJ, Kim TH, Lim SH, et al. The expression of 11beta-hydroxysteroid dehydrogenase type 1 and 2 in nasal polyp-derived epithelial cells and its possible contribution to glucocorticoid activation in nasal polyp. Am J Rhinol Allergy. 2015;29(4):246–50.

Article  PubMed  Google Scholar 

Liao B, Cao PP, Zeng M, Zhen Z, Wang H, Zhang YN, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2015;70(9):1169–80.

Article  CAS 

留言 (0)

沒有登入
gif