Ahanchian H, Moazzen N, Sezavar M, Khalighi N, Khoshkhui M, Aelami MH, et al. COVID-19 in a child with primary antibody deficiency. Clin Case Rep. 2021;9(2):755–8. https://doi.org/10.1002/ccr3.3643.
Mercatelli D, Giorgi FM. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Front Microbiol. 2020;11. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01800. https://doi.org/10.3389/fmicb.2020.01800.
Babaha F, Rezaei N. Primary Immunodeficiency diseases in COVID-19 pandemic: a predisposing or protective factor? Am J Med Sci. 2020;360(6):740–1. https://doi.org/10.1016/j.amjms.2020.07.027.
Article PubMed PubMed Central Google Scholar
Aghamohammadi A, Abolhassani H, Kutukculer N, Wassilak SG, Pallansch MA, Kluglein S et al. Patients with Primary Immunodeficiencies Are a Reservoir of Poliovirus and a Risk to Polio Eradication. Front Immunol. 2017;8. Available from: https://www.frontiersin.org/journals/immunology/articles/https://doi.org/10.3389/fimmu.2017.00685/full
WHO.Guidelines-for-Implementing-PID-Suveillance. 2022. Available from: https://polioeradication.org/wp-content/uploads/2022/06/Guidelines-for-Implementing-PID-Suveillance_EN.pdf
Ben Salem I, Khemiri H, Drechsel O, Arbi M, Böttcher S, Mekki N et al. Reversion of neurovirulent mutations, recombination and high intra-host diversity in vaccine-derived poliovirus excreted by patients with primary immune deficiency. J Med Virol. 2024;96(9):e29918. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/jmv.29918
Garmendia JV, García AH, De Sanctis CV, Hajdúch M, De Sanctis JB. Autoimmunity and immunodeficiency in severe SARS-CoV-2 infection and prolonged COVID-19. Curr Issues Mol Biol. 2022;45(1):33–50. https://doi.org/10.3390/cimb45010003.
Article PubMed PubMed Central Google Scholar
Dolan SA, Mulcahy Levy J, Moss A, Pearce K, Butler M, Jung S et al. SARS-CoV‐2 persistence in immunocompromised children. Pediatr Blood Cancer.2021;68(12). Available at: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/pbc.29277
Mohanty MC, Taur PD, Sawant UP, Yadav RM, Potdar V. Prolonged fecal shedding of SARS-CoV-2 in asymptomatic children with inborn errors of immunity. J Clin Immunol. 2021;41(8):1748–53. https://doi.org/10.1007/s10875-021-01132-1.
Article PubMed PubMed Central Google Scholar
Delavari S, Abolhassani H, Abolnezhadian F, Babaha F, Iranparast S, Ahanchian H, et al. Impact of SARS-CoV-2 pandemic on patients with primary immunodeficiency. J Clin Immunol. 2021;41(2):345–55. https://doi.org/10.1007/s10875-020-00928-x.
Rezaei N. COVID-19 affects healthy pediatricians more than pediatric patients. Infect Control Hosp Epidemiol. 2020;41(9):1106–7. https://doi.org/10.1017/ice.2020.139.
Chappell H, Patel R, Driessens C, Tarr AW, Irving WL, Tighe PJ, et al. Immunocompromised children and young people are at no increased risk of severe COVID-19. J Infect. 2022;84(1):31–9. https://doi.org/10.1016/j.jinf.2021.11.005.
Sánchez-Ramón S, Bermúdez A, González-Granado LI, Rodríguez-Gallego C, Sastre A, Soler-Palacín P et al. Primary and Secondary Immunodeficiency Diseases in Oncohaematology: Warning Signs, Diagnosis, and Management. Front Immunol. 2019;10. Available at: https://www.frontiersin.org/article/https://doi.org/10.3389/fimmu.2019.00586
Drzymalla E, Green RF, Knuth M, Khoury MJ, Dotson WD, Gundlapalli A. COVID-19-related health outcomes in people with primary immunodeficiency: a systematic review. Clin Immunol Orlando Fla. 2022;243:109097. https://doi.org/10.1016/j.clim.2022.109097.
CDC. Healthcare Workers. Centers for Disease Control and Prevention. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html. Accessed: January 14, 2023.
Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. J Allergy Clin Immunol. 2021;147(2):520–31. https://doi.org/10.1016/j.jaci.2020.09.010.
Truong TT, Ryutov A, Pandey U, Yee R, Goldberg L, Bhojwani D, et al. Persistent SARS-CoV-2 infection and increasing viral variants in children and young adults with impaired humoral immunity. MedRxiv Prepr Serv Health Sci. 2021. 2021.02.27.21252099.
Corey L, Beyrer C, Cohen MS, Michael NL, Bedford T, Rolland M. SARS-CoV-2 variants in patients with immunosuppression. N Engl J Med. 2021;385(6):562–6. https://doi.org/10.1056/NEJMsb2104756.
Article PubMed PubMed Central Google Scholar
Weigang S, Fuchs J, Zimmer G, Schnepf D, Kern L, Beer J, et al. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nat Commun. 2021;12(1):6405. https://doi.org/10.1038/s41467-021-26602-3.
Article PubMed PubMed Central Google Scholar
Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. Lancet Microbe. 2024;0(0). Available from: https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(23)00336-1/fulltext
Wang L, Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022;94(4):1728–33. https://doi.org/10.1002/jmv.27516.
Dergham J, Delerce J, Bedotto M, La Scola B, Moal V. Isolation of viable SARS-CoV-2 virus from feces of an immunocompromised patient suggesting a possible Fecal Mode of Transmission. J Clin Med. 2021;10(12):2696.
Article PubMed PubMed Central Google Scholar
Mohanty MC, Taur PD, Sawant UP, Yadav RM, Potdar V. Prolonged Fecal Shedding of SARS-CoV-2 in Asymptomatic Children with Inborn Errors of Immunity. J Clin Immunol. 2021;41(8):1748–53. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443305/
Al-Muhsen S, Alsum Z. Primary immunodeficiency diseases in the Middle East. Ann N Y Acad Sci. 2012;1250(1):56–61. https://doi.org/10.1111/j.1749-6632.2011.06379.x.
Fares W, Chouikha A, Ghedira K, Gdoura M, Rezig D, Boubaker SH, et al. Whole genome sequencing and phylogenetic analysis of six SARS-CoV-2 strains isolated during COVID-19 pandemic in Tunisia, North Africa. BMC Genomics. 2021;22(1):540. https://doi.org/10.1186/s12864-021-07870-1.
Article PubMed PubMed Central Google Scholar
Chouikha A, Fares W, Laamari A, Haddad-Boubaker S, Belaiba Z, Ghedira K, et al. Molecular epidemiology of SARS-CoV-2 in Tunisia (North Africa) through several successive waves of COVID-19. Viruses mars. 2022;14(3):624. https://doi.org/10.3390/v14030624.
Haddad-Boubaker S, Arbi M, Souiai O, Chouikha A, Fares W, Edington K, et al. The Delta variant wave in Tunisia: genetic diversity, spatio-temporal distribution and evidence of the spread of a divergent AY.122 sub-lineage. Front Public Health 4 janv. 2023;10:990832. https://doi.org/10.3389/fpubh.2022.990832.
Khemiri H, Gdoura M, Ben Halima S, Krichen H, Cammà C, Lorusso A, et al. SARS-CoV-2 excretion kinetics in nasopharyngeal and stool samples from the pediatric population. Front Med. 2023;10:1226207. https://doi.org/10.3389/fmed.2023.1226207. PMID: 38020093; PMCID: PMC10643538.
Khemiri H, Mangone I, Gdoura M, Mefteh K, Chouikha A, Fares W et al. Dynamic of SARS-CoV-2 variants circulation in Tunisian pediatric population, during successive waves, from March 2020 to September 2022. Virus Res. 2024;344:199353. Available from: https://www.sciencedirect.com/science/article/pii/S0168170224000467
Borgi A, Meftah K, Trabelsi I, Kyaw MH, Zaghden H, Bouafsoun A, et al. Retrospective analysis of clinical characteristics and Disease outcomes in children and adolescents hospitalized due to COVID-19 infection in Tunisia. Viruses. 2024;16(5):779. https://doi.org/10.3390/v16050779.
Article PubMed PubMed Central Google Scholar
World health Organization. (2004). Manuel for virological Investigation of poliomyelitis, Geneva. https://iris.who.int/handle/10665/68762 [Accessed 08/05/2023].
World health Organization. https://www.who.int/docs/default-source/coronaviruse/peiris-protocol-16-1-20.pdf. [Accessed 08/05/2023].
Gdoura M, Abouda I, Mrad M, Ben Dhifallah I, Belaiba Z, Fares W, et al. SARS-CoV2 RT-PCR assays: in vitro comparison of 4 WHO approved protocols on clinical specimens and its implications for real laboratory practice through variant emergence. Virol J. 2022;19(1):54. https://doi.org/10.1186/s12985-022-01784-4.
Article PubMed PubMed Central Google Scholar
Curini V, Ancora M, Jurisic L, Di Lollo V, Secondini B, Mincarelli LF, et al. Evaluation of next generation sequencing approaches for SARS-CoV-2. Heliyon. 2023;9(11):e21101. https://doi.org/10.1016/j.heliyon.2023.e21101.
Article PubMed PubMed Central Google Scholar
Molini U, Coetzee LM, Engelbrecht T, de Villiers L, de Villiers M, Mangone I, Curini V, Khaiseb S, Ancora M, Cammà C, Lorusso A, Franzo G. SARS-CoV-2 in Namibian dogs. Vaccines (Basel). 2022;10(12):2134. https://doi.org/10.3390/vaccines10122134. PMID: 36560544; PMCID: PMC9785506.
Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38(3):276–8. https://doi.org/10.1038/s41587-020-0439-x.
Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403–7. https://doi.org/10.1038/s41564-020-0770-5.
Article PubMed PubMed Central Google Scholar
Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chall Hoboken NJ. 2017;1(1):33–46. https://doi.org/10.1002/gch2.1018.
Ferrari A, Zecca M, Rizzari C, Porta F, Provenzi M, Marinoni M, et al. Children with cancer in the time of COVID-19: an 8-week report from the six pediatric onco-hematology centers in Lombardia, Italy. Pediatr Blood Cancer. 2020;67(8):e28410. https://doi.org/10.1002/pbc.28410.
留言 (0)