SARS-CoV-2 excretion and genetic evolution in nasopharyngeal and stool samples from primary immunodeficiency and immunocompetent pediatric patients

Ahanchian H, Moazzen N, Sezavar M, Khalighi N, Khoshkhui M, Aelami MH, et al. COVID-19 in a child with primary antibody deficiency. Clin Case Rep. 2021;9(2):755–8. https://doi.org/10.1002/ccr3.3643.

Article  PubMed  Google Scholar 

Mercatelli D, Giorgi FM. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Front Microbiol. 2020;11. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01800. https://doi.org/10.3389/fmicb.2020.01800.

Babaha F, Rezaei N. Primary Immunodeficiency diseases in COVID-19 pandemic: a predisposing or protective factor? Am J Med Sci. 2020;360(6):740–1. https://doi.org/10.1016/j.amjms.2020.07.027.

Article  PubMed  PubMed Central  Google Scholar 

Aghamohammadi A, Abolhassani H, Kutukculer N, Wassilak SG, Pallansch MA, Kluglein S et al. Patients with Primary Immunodeficiencies Are a Reservoir of Poliovirus and a Risk to Polio Eradication. Front Immunol. 2017;8. Available from: https://www.frontiersin.org/journals/immunology/articles/https://doi.org/10.3389/fimmu.2017.00685/full

WHO.Guidelines-for-Implementing-PID-Suveillance. 2022. Available from: https://polioeradication.org/wp-content/uploads/2022/06/Guidelines-for-Implementing-PID-Suveillance_EN.pdf

Ben Salem I, Khemiri H, Drechsel O, Arbi M, Böttcher S, Mekki N et al. Reversion of neurovirulent mutations, recombination and high intra-host diversity in vaccine-derived poliovirus excreted by patients with primary immune deficiency. J Med Virol. 2024;96(9):e29918. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/jmv.29918

Garmendia JV, García AH, De Sanctis CV, Hajdúch M, De Sanctis JB. Autoimmunity and immunodeficiency in severe SARS-CoV-2 infection and prolonged COVID-19. Curr Issues Mol Biol. 2022;45(1):33–50. https://doi.org/10.3390/cimb45010003.

Article  PubMed  PubMed Central  Google Scholar 

Dolan SA, Mulcahy Levy J, Moss A, Pearce K, Butler M, Jung S et al. SARS-CoV‐2 persistence in immunocompromised children. Pediatr Blood Cancer.2021;68(12). Available at: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/pbc.29277

Mohanty MC, Taur PD, Sawant UP, Yadav RM, Potdar V. Prolonged fecal shedding of SARS-CoV-2 in asymptomatic children with inborn errors of immunity. J Clin Immunol. 2021;41(8):1748–53. https://doi.org/10.1007/s10875-021-01132-1.

Article  PubMed  PubMed Central  Google Scholar 

Delavari S, Abolhassani H, Abolnezhadian F, Babaha F, Iranparast S, Ahanchian H, et al. Impact of SARS-CoV-2 pandemic on patients with primary immunodeficiency. J Clin Immunol. 2021;41(2):345–55. https://doi.org/10.1007/s10875-020-00928-x.

Article  PubMed  Google Scholar 

Rezaei N. COVID-19 affects healthy pediatricians more than pediatric patients. Infect Control Hosp Epidemiol. 2020;41(9):1106–7. https://doi.org/10.1017/ice.2020.139.

Article  PubMed  Google Scholar 

Chappell H, Patel R, Driessens C, Tarr AW, Irving WL, Tighe PJ, et al. Immunocompromised children and young people are at no increased risk of severe COVID-19. J Infect. 2022;84(1):31–9. https://doi.org/10.1016/j.jinf.2021.11.005.

Article  PubMed  Google Scholar 

Sánchez-Ramón S, Bermúdez A, González-Granado LI, Rodríguez-Gallego C, Sastre A, Soler-Palacín P et al. Primary and Secondary Immunodeficiency Diseases in Oncohaematology: Warning Signs, Diagnosis, and Management. Front Immunol. 2019;10. Available at: https://www.frontiersin.org/article/https://doi.org/10.3389/fimmu.2019.00586

Drzymalla E, Green RF, Knuth M, Khoury MJ, Dotson WD, Gundlapalli A. COVID-19-related health outcomes in people with primary immunodeficiency: a systematic review. Clin Immunol Orlando Fla. 2022;243:109097. https://doi.org/10.1016/j.clim.2022.109097.

Article  Google Scholar 

CDC. Healthcare Workers. Centers for Disease Control and Prevention. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html. Accessed: January 14, 2023.

Meyts I, Bucciol G, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study. J Allergy Clin Immunol. 2021;147(2):520–31. https://doi.org/10.1016/j.jaci.2020.09.010.

Article  PubMed  Google Scholar 

Truong TT, Ryutov A, Pandey U, Yee R, Goldberg L, Bhojwani D, et al. Persistent SARS-CoV-2 infection and increasing viral variants in children and young adults with impaired humoral immunity. MedRxiv Prepr Serv Health Sci. 2021. 2021.02.27.21252099.

Corey L, Beyrer C, Cohen MS, Michael NL, Bedford T, Rolland M. SARS-CoV-2 variants in patients with immunosuppression. N Engl J Med. 2021;385(6):562–6. https://doi.org/10.1056/NEJMsb2104756.

Article  PubMed  PubMed Central  Google Scholar 

Weigang S, Fuchs J, Zimmer G, Schnepf D, Kern L, Beer J, et al. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nat Commun. 2021;12(1):6405. https://doi.org/10.1038/s41467-021-26602-3.

Article  PubMed  PubMed Central  Google Scholar 

Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. Lancet Microbe. 2024;0(0). Available from: https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(23)00336-1/fulltext

Wang L, Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022;94(4):1728–33. https://doi.org/10.1002/jmv.27516.

Article  PubMed  Google Scholar 

Dergham J, Delerce J, Bedotto M, La Scola B, Moal V. Isolation of viable SARS-CoV-2 virus from feces of an immunocompromised patient suggesting a possible Fecal Mode of Transmission. J Clin Med. 2021;10(12):2696.

Article  PubMed  PubMed Central  Google Scholar 

Mohanty MC, Taur PD, Sawant UP, Yadav RM, Potdar V. Prolonged Fecal Shedding of SARS-CoV-2 in Asymptomatic Children with Inborn Errors of Immunity. J Clin Immunol. 2021;41(8):1748–53. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443305/

Al-Muhsen S, Alsum Z. Primary immunodeficiency diseases in the Middle East. Ann N Y Acad Sci. 2012;1250(1):56–61. https://doi.org/10.1111/j.1749-6632.2011.06379.x.

Article  PubMed  Google Scholar 

Fares W, Chouikha A, Ghedira K, Gdoura M, Rezig D, Boubaker SH, et al. Whole genome sequencing and phylogenetic analysis of six SARS-CoV-2 strains isolated during COVID-19 pandemic in Tunisia, North Africa. BMC Genomics. 2021;22(1):540. https://doi.org/10.1186/s12864-021-07870-1.

Article  PubMed  PubMed Central  Google Scholar 

Chouikha A, Fares W, Laamari A, Haddad-Boubaker S, Belaiba Z, Ghedira K, et al. Molecular epidemiology of SARS-CoV-2 in Tunisia (North Africa) through several successive waves of COVID-19. Viruses mars. 2022;14(3):624. https://doi.org/10.3390/v14030624.

Article  Google Scholar 

Haddad-Boubaker S, Arbi M, Souiai O, Chouikha A, Fares W, Edington K, et al. The Delta variant wave in Tunisia: genetic diversity, spatio-temporal distribution and evidence of the spread of a divergent AY.122 sub-lineage. Front Public Health 4 janv. 2023;10:990832. https://doi.org/10.3389/fpubh.2022.990832.

Article  Google Scholar 

Khemiri H, Gdoura M, Ben Halima S, Krichen H, Cammà C, Lorusso A, et al. SARS-CoV-2 excretion kinetics in nasopharyngeal and stool samples from the pediatric population. Front Med. 2023;10:1226207. https://doi.org/10.3389/fmed.2023.1226207. PMID: 38020093; PMCID: PMC10643538.

Article  Google Scholar 

Khemiri H, Mangone I, Gdoura M, Mefteh K, Chouikha A, Fares W et al. Dynamic of SARS-CoV-2 variants circulation in Tunisian pediatric population, during successive waves, from March 2020 to September 2022. Virus Res. 2024;344:199353. Available from: https://www.sciencedirect.com/science/article/pii/S0168170224000467

Borgi A, Meftah K, Trabelsi I, Kyaw MH, Zaghden H, Bouafsoun A, et al. Retrospective analysis of clinical characteristics and Disease outcomes in children and adolescents hospitalized due to COVID-19 infection in Tunisia. Viruses. 2024;16(5):779. https://doi.org/10.3390/v16050779.

Article  PubMed  PubMed Central  Google Scholar 

World health Organization. (2004). Manuel for virological Investigation of poliomyelitis, Geneva. https://iris.who.int/handle/10665/68762 [Accessed 08/05/2023].

World health Organization. https://www.who.int/docs/default-source/coronaviruse/peiris-protocol-16-1-20.pdf. [Accessed 08/05/2023].

Gdoura M, Abouda I, Mrad M, Ben Dhifallah I, Belaiba Z, Fares W, et al. SARS-CoV2 RT-PCR assays: in vitro comparison of 4 WHO approved protocols on clinical specimens and its implications for real laboratory practice through variant emergence. Virol J. 2022;19(1):54. https://doi.org/10.1186/s12985-022-01784-4.

Article  PubMed  PubMed Central  Google Scholar 

Curini V, Ancora M, Jurisic L, Di Lollo V, Secondini B, Mincarelli LF, et al. Evaluation of next generation sequencing approaches for SARS-CoV-2. Heliyon. 2023;9(11):e21101. https://doi.org/10.1016/j.heliyon.2023.e21101.

Article  PubMed  PubMed Central  Google Scholar 

Molini U, Coetzee LM, Engelbrecht T, de Villiers L, de Villiers M, Mangone I, Curini V, Khaiseb S, Ancora M, Cammà C, Lorusso A, Franzo G. SARS-CoV-2 in Namibian dogs. Vaccines (Basel). 2022;10(12):2134. https://doi.org/10.3390/vaccines10122134. PMID: 36560544; PMCID: PMC9785506.

Article  PubMed  Google Scholar 

Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38(3):276–8. https://doi.org/10.1038/s41587-020-0439-x.

Article  PubMed  Google Scholar 

Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403–7. https://doi.org/10.1038/s41564-020-0770-5.

Article  PubMed  PubMed Central  Google Scholar 

Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chall Hoboken NJ. 2017;1(1):33–46. https://doi.org/10.1002/gch2.1018.

Article  Google Scholar 

Ferrari A, Zecca M, Rizzari C, Porta F, Provenzi M, Marinoni M, et al. Children with cancer in the time of COVID-19: an 8-week report from the six pediatric onco-hematology centers in Lombardia, Italy. Pediatr Blood Cancer. 2020;67(8):e28410. https://doi.org/10.1002/pbc.28410.

Article 

留言 (0)

沒有登入
gif