Sun, H. et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).
Fan, Y., Wei, F., Lang, Y. & Liu, Y. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos. Int. 27, 219–228 (2016).
Article CAS PubMed Google Scholar
Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporos. Int. 18, 427–444 (2007).
Article CAS PubMed Google Scholar
Dytfeld, J. & Michalak, M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin. Exp. Res. 29, 301–309 (2017).
Yamamoto, M., Yamaguchi, T., Yamauchi, M., Kaji, H. & Sugimoto, T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J. Bone Miner. Res. 24, 702–709 (2009).
Article CAS PubMed Google Scholar
Moayeri, A. et al. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther. Clin. Risk Manag. 13, 455–468 (2017).
Article PubMed PubMed Central Google Scholar
Vilaca, T. et al. The risk of hip and non-vertebral fractures in type 1 and type 2 diabetes: a systematic review and meta-analysis update. Bone 137, 115457 (2020).
Janghorbani, M., Van Dam, R. M., Willett, W. C. & Hu, F. B. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166, 495–505 (2007).
Schwartz, A. V. Epidemiology of fractures in type 2 diabetes. Bone 82, 2–8 (2016).
Weber, D. R., Haynes, K., Leonard, M. B., Willi, S. M. & Denburg, M. R. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 38, 1913–1920 (2015).
Article PubMed PubMed Central Google Scholar
Wang, B. et al. Unmasking fracture risk in type 2 diabetes: the association of longitudinal glycemic hemoglobin level and medications. J. Clin. Endocrinol. Metab. 107, e1390–e1401 (2022).
Draghici, A. E., Zahedi, B., Taylor, J. A., Bouxsein, M. L. & Yu, E. W. Vascular deficits contributing to skeletal fragility in type 1 diabetes. Front. Clin. Diabetes Healthcare 4, https://doi.org/10.3389/fcdhc.2023.1272804 (2023).
Elger, M., Parpia, A. S. & Whitham, D. in Nutrition in Kidney Disease (eds Burrowes J. D., Kovesdy, C. P. & Byham-Gray L. D.) 175–196 (Springer, 2020).
Ketteler, M. et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int. 92, 26–36 (2017).
Malluche, H. H., Davenport, D. L., Lima, F. & Monier-Faugere, M. C. Prevalence of low bone formation in untreated patients with osteoporosis. PLoS ONE 17, e0271555 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hygum, K., Starup-Linde, J., Harslof, T., Vestergaard, P. & Langdahl, B. L. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. Eur. J. Endocrinol. 176, R137–R157 (2017).
Article CAS PubMed Google Scholar
Patsch, J. M. et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J. Bone Miner. Res. 28, 313–324 (2013).
Meier, C. et al. Biochemical markers of bone fragility in patients with diabetes. J. Clin. Endocrinol. Metab. 108, e923–e936 (2023).
Article PubMed PubMed Central Google Scholar
Lekkala, S. et al. Increased advanced glycation endproducts, stiffness, and hardness in iliac crest bone from postmenopausal women with type 2 diabetes mellitus on insulin. J. Bone Miner. Res. 38, 261–277 (2023).
Article CAS PubMed Google Scholar
Stenderup, K., Justesen, J., Clausen, C. & Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33, 919–926 (2003).
Piccoli, A. et al. Sclerostin regulation, microarchitecture, and advanced glycation end-products in the bone of elderly women with type 2 diabetes. J. Bone Miner. Res. 35, 2415–2422 (2020).
Article CAS PubMed Google Scholar
Miao, J., Brismar, K., Nyrén, O., Ugarph-Morawski, A. & Ye, W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28, 2850–2855 (2005).
Shanbhogue, V. V. et al. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J. Bone Miner. Res. 30, 2188–2199 (2015).
Article CAS PubMed Google Scholar
Brockstedt, H., Kassem, M., Eriksen, E. F., Mosekilde, L. & Melsen, F. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14, 681–691 (1993).
Article CAS PubMed Google Scholar
Shah, V. N. et al. Type 1 diabetes onset at young age is associated with compromised bone quality. Bone 123, 260–264 (2019).
Article PubMed PubMed Central Google Scholar
Weaver, C. M. et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos. Int. 27, 1281–1386 (2016).
Article CAS PubMed PubMed Central Google Scholar
Cao, J. J. Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 6, 30 (2011).
Article PubMed PubMed Central Google Scholar
Schweiger, B. M., Snell-Bergeon, J. K., Roman, R., McFann, K. & Klingensmith, G. J. Menarche delay and menstrual irregularities persist in adolescents with type 1 diabetes. Reprod. Biol. Endocrinol. : RBE 9, 61 (2011).
Deltsidou, A. Age at menarche and menstrual irregularities of adolescents with type 1 diabetes. J. Pediatr. Adolesc. Gynecol. 23, 162–167 (2010).
Thong, E. P. et al. Increased prevalence of fracture and hypoglycaemia in young adults with concomitant type 1 diabetes mellitus and coeliac disease. Clin. Endocrinol. 88, 37–43 (2018).
Mitri, J. & Pittas, A. G. Vitamin D and diabetes. Endocrinol. Metab. Clin. North. Am. 43, 205–232 (2014).
He, X. et al. Parathyroid hormone is negatively correlated with glycated hemoglobin in newly diagnosed type 2 diabetic patients. Int. J. Endocrinol. 2024, 8414689 (2024).
Article PubMed PubMed Central Google Scholar
ANZDATA Registry. Prevalence of Kidney Failure with Replacement Therapy. 44th Report, Chapter 2. Australia and New Zealand Dialysis and Transplant Registry https://www.anzdata.org.au/wp-content/uploads/2021/09/c02_prevalence_2020_ar_2021_chapter_v1.0_20211112_Final.pdf (2021).
Asamiya, Y., Tsuchiya, K. & Nitta, K. Role of sclerostin in the pathogenesis of chronic kidney disease-mineral bone disorder. Ren. Replacement Ther. 2, 8 (2016).
Lewiecki, E. M. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther. Adv. Musculoskelet. Dis. 6, 48–57 (2014).
Article CAS PubMed PubMed Central Google Scholar
Naylor, K. L. et al. Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clin. J. Am. Soc. Nephrol. 10, 646–653 (2015).
留言 (0)