A Non-invasive Approach for Early Alzheimer’s Detection Through Spontaneous Speech Analysis Using Deep Visibility Graphs

Marwa EG, Moustafa HED, Khalifa F, Khater H, AbdElhalim E. An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alex Eng J. 2023;63:211–21.

Article  Google Scholar 

Nasrolahzadeh M, Rahnamayan S, Haddadnia J. Alzheimer’s disease diagnosis using genetic programming based on higher order spectra features. Mach Learn Appl. 2022;7:100225.

Google Scholar 

López-de-Ipiña K, Martinez-de-Lizarduy U, Calvo PM, Beitia B, García-Melero J, Fernández E, ... Sanz P. On the analysis of speech and disfluencies for automatic detection of mild cognitive impairment. Neural Computing Appl. 2020;32, 15761–15769.

Nasrolahzadeh M, Haddadnia J, Rahnamayan S. Multi-objective optimization of wavelet-packet-based features in pathological diagnosis of Alzheimer using spontaneous speech signals. IEEE Access. 2020;8:112393–406.

Article  Google Scholar 

Zhang J, Wang Q, Wang X, Qiao L, Liu M. Preserving specificity in federated graph learning for fMRI-based neurological disorder identification. Neural Netw. 2024;169:584–96.

Article  MATH  Google Scholar 

Park S, Son SJ, Park K, Nam Y, Shin H, of Ageing LS, Alzheimer's Disease Neuroimaging Initiative. In-house data adaptation to public data: multisite MRI harmonization to predict Alzheimer’s disease conversion. Expert Syst Appl 2024;15(238):122253.

Kaplan E, Baygin M, Barua PD, Dogan S, Tuncer T, Altunisik E, ... Acharya UR. ExHiF: Alzheimer’s disease detection using exemplar histogram-based features with CT and MR images. Med Eng Phys. 2023;115, 103971.

Nour M, Senturk U, Polat K. A novel hybrid model in the diagnosis and classification of Alzheimer’s disease using EEG signals: deep ensemble learning (DEL) approach. Biomed Signal Process Control. 2024;89:105751.

Article  MATH  Google Scholar 

Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J. Higher-order spectral analysis of spontaneous speech signals in Alzheimer’s disease. Cogn Neurodyn. 2018;12:583–96.

Article  Google Scholar 

Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J. A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals. Cogn Neurodyn. 2016;10:495–503.

Article  Google Scholar 

Nasrolahzadeh M, Mohammadpoori Z, Haddadnia J. Analysis of mean square error surface and its corresponding contour plots of spontaneous speech signals in Alzheimer’s disease with adaptive wiener filter. Comput Hum Behav. 2016;61:364–71.

Article  Google Scholar 

Behroozmand R, Almasganj F. Optimal selection of wavelet-packet-based features using genetic algorithm in pathological assessment of patients’ speech signal with unilateral vocal fold paralysis. Comput Biol Med. 2007;37(4):474–85.

Article  Google Scholar 

Krecichwost M, Mocko N, Badura P. Automated detection of sigmatism using deep learning applied to multichannel speech signal. Biomed Signal Process Control. 2021;68:102612.

Article  Google Scholar 

Zolnoori M, Zolnour A, Topaz M. ADscreen: a speech processing-based screening system for automatic identification of patients with Alzheimer’s disease and related dementia. Artif Intell Med. 2023;143:102624.

Article  Google Scholar 

Nasrolahzadeh M, Haddadnia J. Poincaré plots of spontaneous speech signals during Alzheimer’s disease. MitteilungenSaechsischerEntomologen. 2016;119:358–65.

MATH  Google Scholar 

Bhat S, Yoon SY. Automatic assessment of syntactic complexity for spontaneous speech scoring. Speech Commun. 2015;67:42–57.

Article  MATH  Google Scholar 

NASROLAHZADEH M, MOHAMMADPOORI Z, HADDADNIA J. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR CLASSIFICATION OF SPEECH SIGNALS IN ALZHEIMER'S DISEASE USING ACOUSTIC FEATURES AND NON-LINEAR CHARACTERISTICS. Asian J Math Comp Res. 2015;13;3(2):122–31.

López-de-Ipiña K, Solé-Casals J, Eguiraun H, Alonso JB, Travieso CM, Ezeiza A, ... Beitia B (2015) Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: a fractal dimension approach. Comput Speech Language, 30(1), 43–60.

NASROLAHZADEH M, MOHAMMADPOORI Z, HADDADNIA J. Alzheimer's disease diagnosis using spontaneous speech signals and hybrid features. Asian J Math Comp Res. 2015;7(4):322–31.

Lacasa L, Luque B, Luque J, Nuno JC. The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. Europhys Lett. 2009;86(3):30001.

Article  MATH  Google Scholar 

Mohammadpoory Z, Haddadnia J, Azizi M. Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties. Iran J Med Phys. 2018;15:286.

Lozano-Pérez T, Wesley MA. An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM. 1979;22(10):560–70.

Article  MATH  Google Scholar 

Turner A, Doxa M, O’sullivan D, Penn A. From isovists to visibility graphs: a methodology for the analysis of architectural space. Environ Plann B Plann Des. 2001;28(1):103–21.

Article  Google Scholar 

Ahmadlou M, Adeli H, Adeli A. New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. J Neural Transm. 2010;117:1099–109.

Article  MATH  Google Scholar 

Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J. Indices from visibility graph complexity of spontaneous speech signal: an efficient nonlinear tool for Alzheimer’s disease diagnosis. Chaos, Solitons Fractals. 2023;174:113829.

Article  MATH  Google Scholar 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

Article  MATH  Google Scholar 

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

Article  MATH  Google Scholar 

Xu G, Meng Y, Qiu X, Yu Z, Wu X. Sentiment analysis of comment texts based on BiLSTM. Ieee Access. 2019;7:51522–32.

Article  MATH  Google Scholar 

Liu J, Fu F, Li L, Yu J, Zhong D, Zhu S, ... Li J. Efficient pause extraction and encode strategy for Alzheimer’s disease detection using only acoustic features from spontaneous speech. Brain Sci. 2023;13(3), 477.

Bertini F, Allevi D, Lutero G, Calzà L, Montesi D. An automatic Alzheimer’s disease classifier based on spontaneous spoken English. Comput Speech Lang. 2022;72:101298.

Article  Google Scholar 

Alex JSR, Bhyri R, Usha GP, Arvind SV. Noninvasive detection of Alzheimer’s disease from conversational speech using 1D-CNN. In Futuristic communication and network technologies: select proceedings of VICFCNT 2021;1 pp. 583–592. Singapore: Springer Nature Singapore.

Ouyang G, Li X, Dang C, Richards DA. Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats. Clin Neurophysiol. 2008;119(8):1747–55.

Article  MATH  Google Scholar 

Nuñez AM, Lacasa L, Gomez JP, Luque B. Visibility algorithms: a short review. New Front Graph Theory. 2012;119–152.

Donner RV, Donges JF. Visibility graph analysis of geophysical time series: potentials and possible pitfalls. Acta Geophys. 2012;60:589–623.

Article  MATH  Google Scholar 

Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC. From time series to complex networks: the visibility graph. National Acad Sci USA. 2008;105(13):4972–5.

Article  MathSciNet  MATH  Google Scholar 

Bhaduri S, Ghosh D. Electroencephalographic data analysis with visibility graph technique for quantitative assessment of brain dysfunction. Clin EEG Neurosci. 2015;46(3):218–23.

Article  MATH  Google Scholar 

Zhu G, Li Y, Wen P, Wang S. Analysis of alcoholic EEG signals based on horizontal visibility graph entropy. Brain Inform. 2014;1(1):19–25.

Article  MATH  Google Scholar 

Zhu G, Li Y, Wen P. Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J Biomed Health Inform. 2014;18(6):1813–21.

Article  MATH  Google Scholar 

Zhu G, Li Y, Wen PP. An efficient visibility graph similarity algorithm and its application on sleep stages classification. In: Brain Informatics: International Conference, BI 2012, Macau, China, December 4-7, 2012. Proceedings 2012. Springer Berlin Heidelberg. pp. 185–95.

Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J. Analysis of heart rate signals during meditation using visibility graph complexity. Cogn Neurodyn. 2019;13:45–52.

Article  Google Scholar 

Pei X, Wang J, Deng B, Wei X, Yu H. WLPVG approach to the analysis of EEG-based functional brain network under manual acupuncture. Cogn Neurodyn. 2014;8:417–28.

Article  MATH  Google Scholar 

Mohammadpoory Z, Nasrolahzadeh M, Haddadnia J. Epileptic seizure detection in EEG signals based on the weighted visibility graph entropy. Seizure: Eur J Epilepsy. 2017;50:202–8.

Article  Google Scholar 

Zhu G, Li Y, Wen P. Analysing epileptic EEGs with a visibility graph algorithm. In: 2012 5th international conference on biomedical engineering and informatics 2012 Oct 16. IEEE. pp. 432–436.

Mohammadpoory Z, Nasrolahzadeh M, Mahmoodian N, Sayyah M, Haddadnia J. Complex network based models of ECoG signals for detection of induced epileptic seizures in rats. Cogn Neurodyn. 2019;13:325–39.

Article  Google Scholar 

Ahmadlou M, Adeli H. Visibility graph similarity: a new measure of generalized synchronization in coupled dynamic systems. Physica D. 2012;241(4):326–32.

Article  MATH  Google Scholar 

Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J. A novel method for distinction heart rate variability during meditation using LSTM recurrent neural networks based on visibility graph. Biomed Signal Process Control. 2024;90:105822.

Article  MATH  Google Scholar 

Haddadnia J, Mohammadpoory Z. Speech enhancement using Laplacian mixture model under signal presence uncertainty. Int J Eng. 2014;27(9):1367–76.

MATH  Google Scholar 

Nasrolahzadeh M, Mohammadpoory Z, Haddadnia J. The visibility graph analysis of heart rate variability during chi meditation and Kundalini Yoga techniques. Healthcare Analytics. 2023;4:100253.

Article  Google Scholar 

Mohammadpoory Z, Nasrolahzadeh M, Mahmoodian N, Haddadnia J. Automatic identification of diabetic retinopathy stages by using fundus images and visibility graph method. Measurement. 2019;140:133–41.

Article  Google Scholar 

Siami-Namini S, Tavakoli N, Namin AS. The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE International conference on big data (Big Data) 2019. IEEE. pp. 3285–92.

Nasrolahzadeh M, Mohammadpoori Z, Haddadnia J. Alzheimer’s disease diagnosis using spontaneous speech signals and hybrid features. Asian J Math Comput Res. 2015;7(4):322–31.

Google Scholar 

Mohammadpoory Z, Nasrolahzadeh M, Amiri SA. Classification of healthy and epileptic seizure EEG signals based on different visibility graph algorithms and EEG time series. Multime Tools Appl. 2024;83(1):2703–24.

留言 (0)

沒有登入
gif