Erkkinen, M. G., Kim, M.-O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 10, a033118 (2018).
Article PubMed PubMed Central Google Scholar
Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).
Article PubMed CAS Google Scholar
Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).
Article PubMed CAS Google Scholar
Scheibye-Knudsen, M. et al. Protecting the mitochondrial powerhouse. Trends Cell Biol. 25, 158–170 (2015).
Article PubMed CAS Google Scholar
Misgeld, T. & Schwarz, T. L. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96, 651–666 (2017).
Article PubMed PubMed Central CAS Google Scholar
Exner, N. et al. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062 (2012).
Article PubMed PubMed Central CAS Google Scholar
Cheng, X. T., Huang, N. & Sheng, Z. H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110, 1899–1923 (2022).
Article PubMed PubMed Central CAS Google Scholar
Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19, 109–120 (2018).
Article PubMed CAS Google Scholar
Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).
Article PubMed CAS Google Scholar
Burte, F. et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24 (2015).
Article PubMed CAS Google Scholar
Wilson, D. M. et al. Hallmarks of neurodegenerative diseases. Cell 186, 693–714 (2023).
Article PubMed CAS Google Scholar
Henrich, M. T. et al. Mitochondrial dysfunction in Parkinson’s disease—a key disease hallmark with therapeutic potential. Mol. Neurodegen. 18, 83 (2023).
Elkouzi, A. et al. Emerging therapies in Parkinson disease—repurposed drugs and new approaches. Nat. Rev. Neurol. 15, 204–223 (2019).
Article PubMed PubMed Central Google Scholar
Prasuhn, J., Davis, R. L. & Kumar, K. R. Targeting mitochondrial impairment in Parkinson’s disease: challenges and opportunities. Front. Cell Dev. Biol. 8, 615461 (2020).
Singh, A., Faccenda, D. & Campanella, M. Pharmacological advances in mitochondrial therapy. eBioMedicine 65, 103244 (2021).
Article PubMed PubMed Central CAS Google Scholar
Svensson, J. E. et al. Evaluating the effect of rapamycin treatment in Alzheimer’s disease and aging using in vivo imaging: the ERAP phase IIa clinical study protocol. BMC Neurol. 24, 111 (2024).
Article PubMed PubMed Central CAS Google Scholar
Zheng, W. et al. Mitophagy activation by rapamycin enhances mitochondrial function and cognition in 5×FAD mice. Behav. Brain Res. 463, 114889 (2024).
Article PubMed CAS Google Scholar
Lautrup, S. et al. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 30, 630–655 (2019).
Article PubMed PubMed Central CAS Google Scholar
Berven, H. et al. NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson’s disease. Nat. Commun. 14, 7793 (2023).
Article PubMed PubMed Central CAS Google Scholar
Narendra, D. et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).
Article PubMed PubMed Central CAS Google Scholar
Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010).
Article PubMed PubMed Central CAS Google Scholar
Okatsu, K. et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016 (2012).
Okatsu, K. et al. A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem. 288, 36372–36384 (2013).
Article PubMed PubMed Central CAS Google Scholar
Pickrell, A. M. & Youle, R. J. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).
Article PubMed PubMed Central CAS Google Scholar
Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).
Article PubMed PubMed Central CAS Google Scholar
Heo, J. M. et al. The PINK1–PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015).
Article PubMed PubMed Central CAS Google Scholar
Yamano, K. & Youle, R. J. PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769 (2013).
Article PubMed PubMed Central CAS Google Scholar
Liu, Y. et al. The ubiquitination of PINK1 is restricted to its mature 52-kDa form. Cell Rep. 20, 30–39 (2017).
Article PubMed PubMed Central CAS Google Scholar
Gladkova, C. et al. Mechanism of Parkin activation by PINK1. Nature 559, 410–414 (2018).
Article PubMed PubMed Central CAS Google Scholar
Allen, G. F., Toth, R., James, J. & Ganley, I. G. Loss of iron triggers PINK1/parkin-independent mitophagy. EMBO Rep. 14, 1127–1135 (2013).
Article PubMed PubMed Central CAS Google Scholar
Michaelis, J. B. et al. Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy. Nat. Commun. 13, 5164 (2022).
留言 (0)