Alkhaibary, A. et al. Cranioplasty: a comprehensive review of the history, materials, surgical aspects, and complications. World Neurosurg. 139, 445–452 (2020).
van de Vijfeijken, S. et al. Autologous bone is inferior to alloplastic cranioplasties: safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg. 117, 443–452.e448 (2018).
Takahata, M., Awad, H. A., O’Keefe, R. J., Bukata, S. V. & Schwarz, E. M. Endogenous tissue engineering: PTH therapy for skeletal repair. Cell Tissue Res. 347, 545–552 (2012).
Article PubMed CAS Google Scholar
Gorter, E. A., Reinders, C. R., Krijnen, P., Appelman-Dijkstra, N. M. & Schipper, I. B. The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep. 15, 101117 (2021).
Article PubMed PubMed Central CAS Google Scholar
Shim, J. et al. Safety and efficacy of Wharton’s jelly-derived mesenchymal stem cells with teriparatide for osteoporotic vertebral fractures: a phase I/IIa study. Stem Cells Transl. Med. 10, 554–567 (2021).
Article PubMed CAS Google Scholar
Reynolds, D. G. et al. Teriparatide therapy enhances devitalized femoral allograft osseointegration and biomechanics in a murine model. Bone 48, 562–570 (2011).
Article PubMed CAS Google Scholar
Ren, Y. et al. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1-34). PLoS One 6, e23060 (2011).
Article PubMed PubMed Central CAS Google Scholar
Sheyn, D. et al. PTH promotes allograft integration in a calvarial bone defect. Mol. Pharm. 10, 4462–4471 (2013).
Article PubMed PubMed Central CAS Google Scholar
Cheloha, R. W., Gellman, S. H., Vilardaga, J. P. & Gardella, T. J. PTH receptor-1 signalling-mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 11, 712–724 (2015).
Article PubMed PubMed Central CAS Google Scholar
Wein, M. N. Parathyroid hormone signaling in osteocytes. JBMR 2, 22–30 (2018).
Bonnet, N., Conway, S. J. & Ferrari, S. L. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc. Natl. Acad. Sci. USA 109, 15048–15053 (2012).
Article PubMed PubMed Central CAS Google Scholar
Revollo, L. et al. N-cadherin restrains PTH activation of Lrp6/beta-catenin signaling and osteoanabolic action. J. Bone Miner. Res. 30, 274–285 (2015).
Article PubMed CAS Google Scholar
Wan, M. et al. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 22, 2968–2979 (2008).
Article PubMed PubMed Central CAS Google Scholar
Ma, C. et al. Exogenous PTH 1-34 attenuates impaired fracture healing in endogenous PTH deficiency mice via activating Indian hedgehog signaling pathway and accelerating endochondral ossification. Front. Cell Dev. Biol. 9, 750878 (2021).
Snell, R.S. Clinical neuroanatomy. (Lippincott Williams & Wilkins, 2010).
Mack, J., Squier, W. & Eastman, J. T. Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr. Radio. 39, 200–210 (2009).
Suh, D. C. Where did the dura mater come from? Neurointervention 15, 2–3 (2020).
Article PubMed PubMed Central Google Scholar
Yoshida, T., Vivatbutsiri, P., Morriss-Kay, G., Saga, Y. & Iseki, S. Cell lineage in mammalian craniofacial mesenchyme. Mech. Dev. 125, 797–808 (2008).
Article PubMed CAS Google Scholar
Jiang, X., Iseki, S., Maxson, R. E., Sucov, H. M. & Morriss-Kay, G. M. Tissue origins and interactions in the mammalian skull vault. Dev. Biol. 241, 106–116 (2002).
Article PubMed CAS Google Scholar
Schilling K, et al. High resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. Elife 11, e83146 (2022).
Zhai, Y. et al. Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 276, 121041 (2021).
Article PubMed PubMed Central CAS Google Scholar
Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).
Article PubMed PubMed Central CAS Google Scholar
Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376–380 (2014).
Article PubMed PubMed Central CAS Google Scholar
Kusumbe, A. P. & Adams, R. H. Osteoclast progenitors promote bone vascularization and osteogenesis. Nat. Med. 20, 1238–1240 (2014).
Article PubMed CAS Google Scholar
Ferguson, J. W. & Atit, R. P. A tale of two cities: the genetic mechanisms governing calvarial bone development. Genesis 57, e23248 (2019).
Ishii, M., Sun, J., Ting, M. C. & Maxson, R. E. The development of the calvarial bones and sutures and the pathophysiology of craniosynostosis. Curr. Top. Dev. Biol. 115, 131–156 (2015).
Dasgupta, K. & Jeong, J. Developmental biology of the meninges. Genesis 57, e23288 (2019).
Article PubMed PubMed Central Google Scholar
Quarto, N. et al. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones. J. Bone Miner. Res. 25, 1680–1694 (2010).
Article PubMed CAS Google Scholar
Srinivasan, A. et al. Comparative craniofacial bone regeneration capacities of mesenchymal stem cells derived from human neural crest stem cells and bone marrow. ACS Biomater. Sci. Eng. 7, 207–221 (2021).
Article PubMed CAS Google Scholar
Matthews BG, et al. Heterogeneity of murine periosteum progenitors involved in fracture healing. Elife 10, e58534 (2021).
DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59 e44 (2020).
Article PubMed PubMed Central CAS Google Scholar
Rindone, A. N. et al. Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nat. Commun. 12, 6219 (2021).
Article PubMed PubMed Central CAS Google Scholar
Smith, D. M. et al. Precise control of osteogenesis for craniofacial defect repair: the role of direct osteoprogenitor contact in BMP-2-based bioprinting. Ann. Plast. Surg. 69, 485–488 (2012).
Article PubMed CAS Google Scholar
Gosain, A. K. et al. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast. Reconstr. Surg. 112, 515–527 (2003).
留言 (0)