Alcantara J, Mondala A, Hughey L, Shields S (2017) Direct succinic acid production from minimally pretreated biomass using sequential solid-state and slurry fermentation with mixed fungal cultures. Fermentation 3(3):30. https://doi.org/10.3390/fermentation3030030
Arikawa Y, Kuroyanagi T, Shimosaka M, Muratsubaki H, Enomoto K, Kodaira R, Okazaki M (1999) Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J Biosci Bioeng 87(1):28–36. https://doi.org/10.1016/S1389-1723(99)80004-8
Arst HN Jr, Peñalva MA (2003) pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19(4):224–231. https://doi.org/10.1016/S0168-9525(03)00052-0
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140
Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angewandte Chemie-International Edition 54(11):3328–3350. https://doi.org/10.1002/anie.201409033
Becker J, Lange A, Fabarius J, Wittmann C (2015) Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 36:168–175. https://doi.org/10.1016/j.copbio.2015.08.022
Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297. https://doi.org/10.1146/annurev-genet-110410-132430
Brandl J, Aguilar-Pontes MV, Schäpe P, Noerregaard A, Arvas M, Ram AFJ, Meyer V, Tsang A, de Vries RP, Andersen MR (2018) A community-driven reconstruction of the Aspergillus niger metabolic network. Fungal Biology and Biotechnology 5(1):16. https://doi.org/10.1186/s40694-018-0060-7
Article PubMed PubMed Central Google Scholar
Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 97(20):8903–8912. https://doi.org/10.1007/s00253-013-5132-2
Chai KF, Ng KR, Samarasiri M, Chen WN (2022) Precision fermentation to advance fungal food fermentations. Curr Opin Food Sci 47:100881. https://doi.org/10.1016/j.cofs.2022.100881
Chakraborty J, Chaudhary AA, Khan S-U-D, Rudayni HA, Rahaman SM, Sarkar H (2022) CRISPR/Cas-based biosensor as a new age detection method for pathogenic bacteria. ACS Omega 7(44):39562–39573. https://doi.org/10.1021/acsomega.2c04513
Article PubMed PubMed Central Google Scholar
Chang P-K, Scharfenstein LL, Mahoney N, Kong Q (2023) Kojic acid gene clusters and the transcriptional activation mechanism of Aspergillus flavus KojR on expression of clustered genes. Journal of Fungi 9(2):259. https://doi.org/10.3390/jof9020259
Article PubMed PubMed Central Google Scholar
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387):436–439. https://doi.org/10.1126/science.aar6245
Article PubMed PubMed Central Google Scholar
Chen X, Zhou J, Ding Q, Luo Q, Liu L (2019) Morphology engineering of Aspergillus oryzae for l-malate production. Biotechnol Bioeng 116(10):2662–2673. https://doi.org/10.1002/bit.27089
Chen M-Y, Zhao F-L, Chu W-L, Bai M-R, Zhang D-M (2023) A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomed Pharmacother 165:115045. https://doi.org/10.1016/j.biopha.2023.115045
Chen Z, Zhang C, Pei L, Qian Q, Lu L (2023) Production of L-malic acid by metabolically engineered Aspergillus nidulans based on efficient CRISPR–Cas9 and Cre-loxP systems. J Fungi 9(7):719. https://doi.org/10.3390/jof9070719
Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S (2023) Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol 107(7):2111–2130. https://doi.org/10.1007/s00253-023-12451-1
Djukić-Vuković A, Mladenović D, Ivanović J, Pejin J, Mojović L (2019) Towards sustainability of lactic acid and poly-lactic acid polymers production. Renew Sustain Energy Rev 108:238–252. https://doi.org/10.1016/j.rser.2019.03.050
Elmore JR, Dexter GN, Salvachúa D, Martinez-Baird J, Hatmaker EA, Huenemann JD, Klingeman DM, Peabody GL, Peterson DJ, Singer C, Beckham GT, Guss AM (2021) Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat Commun 12(1):2261. https://doi.org/10.1038/s41467-021-22556-8
Article PubMed PubMed Central Google Scholar
Hamilton DL, Abremski K (1984) Site-specific recombination by the bacteriophage P1 lox-Cre system: Cre-mediated synapsis of two lox sites. J Mol Biol 178(2):481–486. https://doi.org/10.1016/0022-2836(84)90154-2
Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb Cell Fact 15(1):130. https://doi.org/10.1186/s12934-016-0527-2
Article PubMed PubMed Central Google Scholar
Hossain AH, van Gerven R, Overkamp KM, Lübeck PS, Taşpınar H, Türker M, Punt PJ (2019) Metabolic engineering with ATP-citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus niger. Biotechnol Biofuels 12(1):233. https://doi.org/10.1186/s13068-019-1577-6
Article PubMed PubMed Central Google Scholar
Hossain GS, Saini M, Miyake R, Ling H, Chang MW (2020) Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol 38(7):797–810. https://doi.org/10.1016/j.tibtech.2020.03.013
Hou L, Liu L, Zhang H, Zhang L, Zhang L, Zhang J, Gao Q, Wang D (2018) Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production. Appl Microbiol Biotechnol 102(18):7981–7995. https://doi.org/10.1007/s00253-018-9197-9
Huang X, Men P, Tang S, Lu X (2021) Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr Opin Biotechnol 69:273–280. https://doi.org/10.1016/j.copbio.2021.02.004
Huang Z, Tian D, Liu Y, Lin Z, Lyon CJ, Lai W, Fusco D, Drouin A, Yin X, Hu T, Ning B (2020) Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosensors and Bioelectronics 164. https://doi.org/10.1016/j.bios.2020.112316
Iyyappan J, Bharathiraja B, Baskar G, Kamalanaban E (2019) Process optimization and kinetic analysis of malic acid production from crude glycerol using Aspergillus niger. Biores Technol 281:18–25. https://doi.org/10.1016/j.biortech.2019.02.067
Jia X, Song J, Wu Y, Feng S, Sun Z, Hu Y, Yu M, Han R, Zeng B (2024) Strategies for the enhancement of secondary metabolite production via biosynthesis gene cluster regulation in Aspergillus oryzae. Journal of Fungi 10(5):312. https://doi.org/10.3390/jof10050312
Article PubMed PubMed Central Google Scholar
Kadooka C, Nakamura E, Mori K, Okutsu K, Yoshizaki Y, Takamine K, Goto M, Tamaki H, Futagami T (2020) LaeA controls citric acid production through regulation of the citrate exporter-encoding cexA gene in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol. https://doi.org/10.1128/aem.01950-19
Article PubMed PubMed Central Google Scholar
Kanaar R, Hoeijmakers JHJ, Van Gent DC (1998) Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol 8(12):483–489. https://doi.org/10.1016/S0962-8924(98)01383-X
Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J-i (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotech Lett 38(4):637–642. https://doi.org/10.1007/s10529-015-2015-x
留言 (0)