Ams DA, Maurice PA, Hersman LE, Forsythe JH (2002) Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chem Geol 188:161–170. https://doi.org/10.1016/S0009-2541(02)00077-3
Andres Y, MacCordick HJ, Hubert J-C (1991) Complexes of mycobactin from Mycobacterium smegmatis with scandium, yttrium and lanthanum. Biol Met 4:207–210. https://doi.org/10.1007/BF01141182
Article CAS PubMed Google Scholar
Arnow LE (1937) Colorimetric determination of the components of 3, 4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537
Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153. https://doi.org/10.1146/annurev-arplant-050213-035759
Article CAS PubMed Google Scholar
Benzal E, Solé M, Lao C, Gamisans X, Dorado A (2020) Elemental copper recovery from e-wastes mediated with a two-step bioleaching process. JWBM 11:5457–5465. https://doi.org/10.1007/s12649-020-01040-2
Bernardes AM, Espinosa DCR, Tenório JS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130:291–298. https://doi.org/10.1016/j.jpowsour.2003.12.026
Braun V, Hantke K (2013) In: Chakraborty R, Braun V, Hantke K, Cornelis P (eds) The Tricky Ways Bacteria Cope with Iron Limitation. In: Iron uptake in Bacteria with emphasis on E coli and Pseudomonas. Springer Science & Business Media, pp 31–56. https://doi.org/10.1007/978-94-007-6088-2.
Carter KP, Deblonde GJ-P, Lohrey TD, Bailey TA, An DD, Shield KM, Lukens WW Jr, Abergel RJ (2020) Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun Chem 3:61. https://doi.org/10.1038/s42004-020-0307-0
Article CAS PubMed PubMed Central Google Scholar
Chaitanya K, Mahmood S, Ranakausar S, Kumar N (2014) Polymer producing bacteria showing siderophore activity with chrome azurol S (CAS) agar plate assay. IJSRP 4:1–3
Chiadò A, Varani L, Bosco F, Marmo L (2013) Opening study on the development of a new biosensor for metal toxicity based on Pseudomonas fluorescens pyoverdine. Biosensors 3:385–399. https://doi.org/10.3390/bios3040385
Article CAS PubMed PubMed Central Google Scholar
Colombowala A, Aruna K (2018) Studies on optimization of siderophore production by Pseudomonas aeruginosa Azar 11 isolated from aquatic soil and its antibacterial activity. IJPBS 8:714–731
Darnal S, Patial V, Kumar V, Kumar S, Kumar V, Padwad YS, Singh D (2023) Biochemical characterization of extremozyme L-asparaginase from Pseudomonas sp. PCH199 for therapeutics. AMB Express 13:22. https://doi.org/10.1186/s13568-023-01521-2
Article CAS PubMed PubMed Central Google Scholar
Das S, Barooah M (2018) Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle. BMC Microbiol 18:1–11. https://doi.org/10.1186/s12866-018-1240-6
de Villegas MED, Villa P, Frías A (2002) Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Rev Latinoam Microbiol 44:112–117
Deb CR, Tatung M (2024) Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: a review. S Afr J Bot 165:153–162. https://doi.org/10.1016/j.sajb.2023.12.031
El-Sheikh M, El-Kazzaz SA, Hafez E, Madkour S, El-Gayyar SM (2011) DETECTION, PURIFICATION, AND IDENTIFICATION OF SIDEROPHORES PRODUCED BY Pseudomonas fluorescens ISOLATES USING SDS-PAGE AND HPLC. JPPP 2:691–705. https://doi.org/10.21608/jppp.2011.86516
Ferreira ML, Ramirez SA, Vullo DL (2018) Chemical characterization and ligand behaviour of Pseudomonas veronii 2E siderophores. World J Microbiol Biotechnol 34:1–12. https://doi.org/10.1007/s11274-018-2519-3
Ferret C, Sterckeman T, Cornu JY, Gangloff S, Schalk IJ, Geoffroy VA (2014) Siderophore-promoted dissolution of smectite by fluorescent Pseudomonas. Environ Microbiol Rep 6:459–467. https://doi.org/10.1111/1758-2229.12146
Article CAS PubMed Google Scholar
Fuchs R, Schafer M, Geoffroy V, Meyer J-M (2001) Siderotyping a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1:31–57. https://doi.org/10.2174/1568026013395542
Article CAS PubMed Google Scholar
Hofmann M, Retamal-Morales G, Tischler D (2020) Metal binding ability of microbial natural metal chelators and potential applications. Nat Prod Rep 37:1262–1283. https://doi.org/10.1039/C9NP00058E
Article CAS PubMed Google Scholar
Höfte M (2021) The use of Pseudomonas spp. as bacterial biocontrol agents to control plant disease. Burleigh Dodds
Kanwar P, Baby D, Bauer P (2021) Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses? Plant Biol 23:31–38. https://doi.org/10.1111/plb.13261
Kejela T, Thakkar VR, Patel RR (2017) A novel strain of Pseudomonas inhibits Colletotrichum gloeosporioides and Fusarium oxysporum infections and promotes germination of coffee. Rhizosphere 4:9–15. https://doi.org/10.1016/j.rhisph.2017.05.002
Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–Siderophore: a review. Microbiol Res 212:103–111. https://doi.org/10.1016/j.micres.2017.10.012
Article CAS PubMed Google Scholar
Kotb E, Al-Abdalall AH, Ababutain I, AlAhmady NF, Aldossary S, Alkhaldi E, Alghamdi AI, Alzahrani HA, Almuhawish MA, Alshammary MN (2024) Anticandidal activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7. Antibiotics 13:347–368. https://doi.org/10.3390/antibiotics13040347
Article CAS PubMed PubMed Central Google Scholar
Kumar V, Menon S, Agarwal H, Gopalakrishnan D (2017) Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour-Effic Technol 3:434–439. https://doi.org/10.1016/j.reffit.2017.04.004
Kumari S, Kumar P, Kiran S, Kumari S, Singh A (2022) Optimization of siderophore production by Bacillus subtilis DR2 and its effect on growth promotion of Coriandrum sativum. Russ Agric Sci 48:467–475. https://doi.org/10.3103/S1068367422060076
Lin S-L, Huang K-L, Wang I-C, Chou I-C, Kuo Y-M, Hung C-H, Lin C (2016) Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes. J Air Waste Manage Assoc 66:296–306. https://doi.org/10.1080/10962247.2015.1131206
Ma J, Li S, Wang J, Jiang S, Panchal B, Sun Y (2023) Bioleaching rare earth elements from coal fly ash by Aspergillus Niger. Fuel 354:129387
Mazari HE, Meliani A, BERKAT S, Aliane S, Djibaoui R, Bouderoua K (2024) Washing of heavy metal-contaminated soils using pyoverdine extracted from plant growth-promoting bacteria Pseudomonas Lactis and P. Atacamensis. CJEES 19:169–178. https://doi.org/10.26471/cjees/2024/019/288
Mei S, Bian W, Yang A, Xu P, Qian X, Yang L, Shi X, Niu A (2024) The highly effective cadmium-resistant mechanism of Pseudomonas aeruginosa and the function of pyoverdine induced by cadmium. J Hazard Mater 469:133876. https://doi.org/10.1016/j.jhazmat.2024.133876
Article CAS PubMed Google Scholar
Mirabello S (2006) Influence of siderophore producing bacteria and organic ligands on phase distribution of cadmium and its uptake by Brassica napus in the presence of goethite.Dissertation, Faculty of the Graduate School of Cornell University
Moll H, Glorius M, Bernhard G, Johnsson A, Pedersen K, Schäfer M, Budzikiewicz H (2008) Characterization of pyoverdins secreted by a subsurface strain of Pseudomonas fluorescens and their interactions with uranium (VI). Geomicrobiol J 25:157–166. https://doi.org/10.1080/01490450802006850
Monali D, Subramanyan JN, Satyan KB (2018) Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas. JPPR 58:36–43. https://doi.org/10.24425/119116
Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567.
留言 (0)