Bioleaching of lanthanum from nickel metal hydride dry battery using siderophores produced by Pseudomonas sp.

Ams DA, Maurice PA, Hersman LE, Forsythe JH (2002) Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chem Geol 188:161–170. https://doi.org/10.1016/S0009-2541(02)00077-3

Article  CAS  Google Scholar 

Andres Y, MacCordick HJ, Hubert J-C (1991) Complexes of mycobactin from Mycobacterium smegmatis with scandium, yttrium and lanthanum. Biol Met 4:207–210. https://doi.org/10.1007/BF01141182

Article  CAS  PubMed  Google Scholar 

Arnow LE (1937) Colorimetric determination of the components of 3, 4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

Article  CAS  Google Scholar 

Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153. https://doi.org/10.1146/annurev-arplant-050213-035759

Article  CAS  PubMed  Google Scholar 

Benzal E, Solé M, Lao C, Gamisans X, Dorado A (2020) Elemental copper recovery from e-wastes mediated with a two-step bioleaching process. JWBM 11:5457–5465. https://doi.org/10.1007/s12649-020-01040-2

Article  CAS  Google Scholar 

Bernardes AM, Espinosa DCR, Tenório JS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130:291–298. https://doi.org/10.1016/j.jpowsour.2003.12.026

Article  CAS  Google Scholar 

Braun V, Hantke K (2013) In: Chakraborty R, Braun V, Hantke K, Cornelis P (eds) The Tricky Ways Bacteria Cope with Iron Limitation. In: Iron uptake in Bacteria with emphasis on E coli and Pseudomonas. Springer Science & Business Media, pp 31–56. https://doi.org/10.1007/978-94-007-6088-2.

Carter KP, Deblonde GJ-P, Lohrey TD, Bailey TA, An DD, Shield KM, Lukens WW Jr, Abergel RJ (2020) Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun Chem 3:61. https://doi.org/10.1038/s42004-020-0307-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaitanya K, Mahmood S, Ranakausar S, Kumar N (2014) Polymer producing bacteria showing siderophore activity with chrome azurol S (CAS) agar plate assay. IJSRP 4:1–3

Google Scholar 

Chiadò A, Varani L, Bosco F, Marmo L (2013) Opening study on the development of a new biosensor for metal toxicity based on Pseudomonas fluorescens pyoverdine. Biosensors 3:385–399. https://doi.org/10.3390/bios3040385

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colombowala A, Aruna K (2018) Studies on optimization of siderophore production by Pseudomonas aeruginosa Azar 11 isolated from aquatic soil and its antibacterial activity. IJPBS 8:714–731

CAS  Google Scholar 

Darnal S, Patial V, Kumar V, Kumar S, Kumar V, Padwad YS, Singh D (2023) Biochemical characterization of extremozyme L-asparaginase from Pseudomonas sp. PCH199 for therapeutics. AMB Express 13:22. https://doi.org/10.1186/s13568-023-01521-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das S, Barooah M (2018) Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle. BMC Microbiol 18:1–11. https://doi.org/10.1186/s12866-018-1240-6

Article  CAS  Google Scholar 

de Villegas MED, Villa P, Frías A (2002) Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Rev Latinoam Microbiol 44:112–117

Google Scholar 

Deb CR, Tatung M (2024) Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: a review. S Afr J Bot 165:153–162. https://doi.org/10.1016/j.sajb.2023.12.031

Article  CAS  Google Scholar 

El-Sheikh M, El-Kazzaz SA, Hafez E, Madkour S, El-Gayyar SM (2011) DETECTION, PURIFICATION, AND IDENTIFICATION OF SIDEROPHORES PRODUCED BY Pseudomonas fluorescens ISOLATES USING SDS-PAGE AND HPLC. JPPP 2:691–705. https://doi.org/10.21608/jppp.2011.86516

Article  Google Scholar 

Ferreira ML, Ramirez SA, Vullo DL (2018) Chemical characterization and ligand behaviour of Pseudomonas veronii 2E siderophores. World J Microbiol Biotechnol 34:1–12. https://doi.org/10.1007/s11274-018-2519-3

Article  CAS  Google Scholar 

Ferret C, Sterckeman T, Cornu JY, Gangloff S, Schalk IJ, Geoffroy VA (2014) Siderophore-promoted dissolution of smectite by fluorescent Pseudomonas. Environ Microbiol Rep 6:459–467. https://doi.org/10.1111/1758-2229.12146

Article  CAS  PubMed  Google Scholar 

Fuchs R, Schafer M, Geoffroy V, Meyer J-M (2001) Siderotyping a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1:31–57. https://doi.org/10.2174/1568026013395542

Article  CAS  PubMed  Google Scholar 

Hofmann M, Retamal-Morales G, Tischler D (2020) Metal binding ability of microbial natural metal chelators and potential applications. Nat Prod Rep 37:1262–1283. https://doi.org/10.1039/C9NP00058E

Article  CAS  PubMed  Google Scholar 

Höfte M (2021) The use of Pseudomonas spp. as bacterial biocontrol agents to control plant disease. Burleigh Dodds

Kanwar P, Baby D, Bauer P (2021) Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses? Plant Biol 23:31–38. https://doi.org/10.1111/plb.13261

Article  PubMed  Google Scholar 

Kejela T, Thakkar VR, Patel RR (2017) A novel strain of Pseudomonas inhibits Colletotrichum gloeosporioides and Fusarium oxysporum infections and promotes germination of coffee. Rhizosphere 4:9–15. https://doi.org/10.1016/j.rhisph.2017.05.002

Article  Google Scholar 

Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–Siderophore: a review. Microbiol Res 212:103–111. https://doi.org/10.1016/j.micres.2017.10.012

Article  CAS  PubMed  Google Scholar 

Kotb E, Al-Abdalall AH, Ababutain I, AlAhmady NF, Aldossary S, Alkhaldi E, Alghamdi AI, Alzahrani HA, Almuhawish MA, Alshammary MN (2024) Anticandidal activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7. Antibiotics 13:347–368. https://doi.org/10.3390/antibiotics13040347

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar V, Menon S, Agarwal H, Gopalakrishnan D (2017) Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour-Effic Technol 3:434–439. https://doi.org/10.1016/j.reffit.2017.04.004

Article  Google Scholar 

Kumari S, Kumar P, Kiran S, Kumari S, Singh A (2022) Optimization of siderophore production by Bacillus subtilis DR2 and its effect on growth promotion of Coriandrum sativum. Russ Agric Sci 48:467–475. https://doi.org/10.3103/S1068367422060076

Article  Google Scholar 

Lin S-L, Huang K-L, Wang I-C, Chou I-C, Kuo Y-M, Hung C-H, Lin C (2016) Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes. J Air Waste Manage Assoc 66:296–306. https://doi.org/10.1080/10962247.2015.1131206

Article  CAS  Google Scholar 

Ma J, Li S, Wang J, Jiang S, Panchal B, Sun Y (2023) Bioleaching rare earth elements from coal fly ash by Aspergillus Niger. Fuel 354:129387

Article  CAS  Google Scholar 

Mazari HE, Meliani A, BERKAT S, Aliane S, Djibaoui R, Bouderoua K (2024) Washing of heavy metal-contaminated soils using pyoverdine extracted from plant growth-promoting bacteria Pseudomonas Lactis and P. Atacamensis. CJEES 19:169–178. https://doi.org/10.26471/cjees/2024/019/288

Article  Google Scholar 

Mei S, Bian W, Yang A, Xu P, Qian X, Yang L, Shi X, Niu A (2024) The highly effective cadmium-resistant mechanism of Pseudomonas aeruginosa and the function of pyoverdine induced by cadmium. J Hazard Mater 469:133876. https://doi.org/10.1016/j.jhazmat.2024.133876

Article  CAS  PubMed  Google Scholar 

Mirabello S (2006) Influence of siderophore producing bacteria and organic ligands on phase distribution of cadmium and its uptake by Brassica napus in the presence of goethite.Dissertation, Faculty of the Graduate School of Cornell University

Moll H, Glorius M, Bernhard G, Johnsson A, Pedersen K, Schäfer M, Budzikiewicz H (2008) Characterization of pyoverdins secreted by a subsurface strain of Pseudomonas fluorescens and their interactions with uranium (VI). Geomicrobiol J 25:157–166. https://doi.org/10.1080/01490450802006850

Article  CAS  Google Scholar 

Monali D, Subramanyan JN, Satyan KB (2018) Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas. JPPR 58:36–43. https://doi.org/10.24425/119116

Article  CAS  Google Scholar 

Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567.

留言 (0)

沒有登入
gif