Dexter, F., Dexter, E. U., Masursky, D., & Nussmeier, N. A. (2008). Systematic review of general thoracic surgery articles to identify predictors of operating room case durations. Anesthesia & Analgesia, 106(4), 1232-1241. https://doi.org/10.1213/ane.0b013e318164f0d5
Strum, D. P., May, J. H., & Vargas, L. G. (2000). Modeling the uncertainty of surgical procedure times: comparison of log-normal and normal models. The Journal of the American Society of Anesthesiologists, 92(4), 1160-1167. https://doi.org/10.1097/00000542-200004000-00035
Stepaniak, P. S., Vrijland, W. W., de Quelerij, M., de Vries, G., & Heij, C. (2010). Working with a fixed operating room team on consecutive similar cases and the effect on case duration and turnover time. Archives of surgery, 145(12), 1165-1170. https://doi.org/10.1001/archsurg.2010.255
Gabriel, R. A., Harjai, B., Simpson, S., Goldhaber, N., Curran, B. P., & Waterman, R. S. (2022). Machine learning-based models predicting outpatient surgery end time and recovery room discharge at an ambulatory surgery center. Anesthesia & Analgesia, 135(1), 159-169. https://doi.org/10.1213/ANE.0000000000006015
Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and scheduling decisions under uncertainty. Health care management science, 10, 13-24. https://doi.org/10.1007/s10729-006-9005-4
Pandit, J. J. (2020). Rational planning of operating lists: a prospective comparison of ‘booking to the mean’vs.‘probabilistic case scheduling’in urology. Anaesthesia, 75(5), 642-647. https://doi.org/10.1111/anae.14958
Dexter, F., Macario, A., Epstein, R. H., & Ledolter, J. (2005). Validity and usefulness of a method to monitor surgical services’ average bias in scheduled case durations. Canadian Journal of Anesthesia/Journal canadien d'anesthésie, 52(9), 935-939. https://doi.org/10.1007/BF03022054
Dexter, E. U., Dexter, F., Masursky, D., & Kasprowicz, K. A. (2010). Prospective trial of thoracic and spine surgeons' updating of their estimated case durations at the start of cases. Anesthesia & Analgesia, 110(4), 1164-1168. https://https://doi.org/10.1213/ANE.0b013e3181cd6eb9
Guinet, A., & Chaabane, S. (2003). Operating theatre planning. International Journal of Production Economics, 85(1), 69-81. https://doi.org/10.1016/S0925-5273(03)00087-2
Jebali, A., Alouane, A. B. H., & Ladet, P. (2006). Operating rooms scheduling. International Journal of Production Economics, 99(1-2), 52-62. https://doi.org/10.1016/j.ijpe.2004.12.006
Tuwatananurak, J. P., Zadeh, S., Xu, X., Vacanti, J. A., Fulton, W. R., Ehrenfeld, J. M., & Urman, R. D. (2019). Machine learning can improve estimation of surgical case duration: a pilot study. Journal of medical systems, 43, 1-7. https://doi.org/10.1007/s10916-019-1160-5
Tankard, K., Acciavatti, T. D., Vacanti, J. C., Heydarpour, M., Beutler, S. S., Flanagan, H. L., & Urman, R. D. (2018). Contributors to operating room underutilization and implications for hospital administrators. The Health Care Manager, 37(2), 118-128. https://doi.org/10.1097/HCM.0000000000000214
Jiao, Y., Xue, B., Lu, C., Avidan, M. S., & Kannampallil, T. (2022). Continuous real-time prediction of surgical case duration using a modular artificial neural network. British journal of anaesthesia, 128(5), 829-837. https://doi.org/10.1016/j.bja.2021.12.039
Article PubMed PubMed Central Google Scholar
Strömblad, C. T., Baxter-King, R. G., Meisami, A., Yee, S. J., Levine, M. R., Ostrovsky, A., ... & Wilson, R. S. (2021). Effect of a predictive model on planned surgical duration accuracy, patient wait time, and use of presurgical resources: a randomized clinical trial. JAMA surgery, 156(4), 315-321. https://doi.org/10.1001/jamasurg.2020.6361
Article PubMed PubMed Central Google Scholar
Miller, L. E., Goedicke, W., Crowson, M. G., Rathi, V. K., Naunheim, M. R., & Agarwala, A. V. (2023). Using machine learning to predict operating room case duration: a case study in otolaryngology. Otolaryngology–Head and Neck Surgery, 168(2), 241-247. https://doi.org/10.1177/01945998221076480
Gabriel, R. A., Harjai, B., Simpson, S., Du, A. L., Tully, J. L., George, O., & Waterman, R. (2023). An ensemble learning approach to improving prediction of case duration for spine surgery: algorithm development and validation. JMIR Perioperative Medicine, 6, e39650. https://doi.org/10.2196/39650
Article PubMed PubMed Central Google Scholar
Kendale, S., Bishara, A., Burns, M., Solomon, S., Corriere, M., & Mathis, M. (2023). Machine learning for the prediction of procedural case durations developed using a large multicenter database: algorithm development and validation study. JMIR AI, 2(1), e44909. https://doi.org/10.2196/44909
Article PubMed PubMed Central Google Scholar
Macario, A. (2010). What does one minute of operating room time cost?. Journal of clinical anesthesia, 4(22), 233-236. https://doi.org/10.1016/j.jclinane.2010.02.003
Maillo, J., Ramírez, S., Triguero, I., & Herrera, F. (2017). kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data. Knowledge-Based Systems, 117, 3-15. https://doi.org/10.1016/j.knosys.2016.06.012
Qi, Y. (2012). Random forest for bioinformatics. Ensemble machine learning: Methods and applications, 307–323. https://doi.org/10.1007/978-1-4419-9326-7_11
Schober, P., & Vetter, T. R. (2021). Logistic regression in medical research. Anesthesia & Analgesia, 132(2), 365-366. https://doi.org/10.1213/ANE.0000000000005247
Ogunleye, A., & Wang, Q. G. (2019). XGBoost model for chronic kidney disease diagnosis. IEEE/ACM transactions on computational biology and bioinformatics, 17(6), 2131-2140. https://doi.org/10.1109/TCBB.2019.2911071
Yang, H., Chen, Z., Yang, H., & Tian, M. (2023). Predicting coronary heart disease using an improved LightGBM model: Performance analysis and comparison. IEEE Access, 11, 23366-23380. https://doi.org/10.1109/ACCESS.2023.3253885
Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of big data, 7(1), 94. https://doi.org/10.1186/s40537-020-00369-8
Article PubMed PubMed Central Google Scholar
Bartek, M. A., Saxena, R. C., Solomon, S., Fong, C. T., Behara, L. D., Venigandla, R., ... & Nair, B. G. (2019). Improving operating room efficiency: machine learning approach to predict case-time duration. Journal of the American College of Surgeons, 229(4), 346-354. https://doi.org/10.1016/j.jamcollsurg.2019.05.029
Article PubMed PubMed Central Google Scholar
Childers, C. P., & Maggard-Gibbons, M. (2018). Understanding costs of care in the operating room. JAMA surgery, 153(4), e176233-e176233. https://doi.org/10.1001/jamasurg.2017.6233
Article PubMed PubMed Central Google Scholar
Stey, A. M., Brook, R. H., Needleman, J., Hall, B. L., Zingmond, D. S., Lawson, E. H., & Ko, C. Y. (2015). Hospital costs by cost center of inpatient hospitalization for medicare patients undergoing major abdominal surgery. Journal of the American College of Surgeons, 220(2), 207-217. https://doi.org/10.1016/j.jamcollsurg.2014.10.021
Rothstein, D. H., & Raval, M. V. (2018). Operating room efficiency. In Seminars in pediatric surgery. Vol. 27, No. 2, pp. 79-85. https://doi.org/10.1053/j.sempedsurg.2018.02.004
Aldecoa, C., Bettelli, G., Bilotta, F., Sanders, R. D., Audisio, R., Borozdina, A., ... & Spies, C. D. (2017). European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. European Journal of Anaesthesiology| EJA, 34(4), 192-214. https://doi.org/10.1097/EJA.0000000000000594
Joris, J., Kehlet, H., & Slim, K. (2022). Postoperative cognitive dysfunction: time for enhanced recovery after surgery programmes. European Journal of Anaesthesiology| EJA, 39(9), 733-734. https://doi.org/10.1097/EJA.0000000000001684
de Aguilar-Nascimento, J. E., & Dock-Nascimento, D. B. (2010). Reducing preoperative fasting time: A trend based on evidence. World Journal of Gastrointestinal Surgery, 2(3), 57. https://doi.org/10.4240/wjgs.v2.i3.57
Article PubMed PubMed Central Google Scholar
Marsman, M., Kappen, T. H., Vernooij, L. M., van der Hout, E. C., van Waes, J. A., & van Klei, W. A. (2023). Association of a liberal fasting policy of clear fluids before surgery with fasting duration and patient well-being and safety. JAMA surgery, 158(3), 254-263. https://doi.org/10.1001/jamasurg.2022.5867
Article PubMed PubMed Central Google Scholar
Huang, C. C., Lai, J., Cho, D. Y., & Yu, J. (2020). A machine learning study to improve surgical case duration prediction. https://doi.org/10.21203/rs.3.rs-40927/v1
Riahi, V., Hassanzadeh, H., Khanna, S., Boyle, J., Syed, F.,
留言 (0)