Forecasting Mortality Associated Emergency Department Crowding with LightGBM and Time Series Data

Finnish Meteorological Institute Open Weather Data. https://www.ilmatieteenlaitos.fi/avoin-data. Accessed: 2020-02-02.

The Impact of Emergency Department Crowding Measures on Time to Antibiotics for Patients With Community-Acquired Pneumonia. Ann. Emerg. Med. 50(5):510–516, 2007. ISSN 01960644. https://doi.org/10.1016/j.annemergmed.2007.07.021.

Álvarez-Chaves, H., Muñoz, P., and R-Moreno, M. D., Machine learning methods for predicting the admissions and hospitalisations in the emergency department of a civil and military hospital. J. Intell. Inf. Syst. 61(3):881–900, 2023. ISSN 15737675. https://doi.org/10.1007/s10844-023-00790-4.

Aroua, A., and Abdul-Nour, G., Forecast emergency room visits-a major diagnostic categories based approach. Int. J. Metrol. Quality Eng. 6(2), 2015. ISSN 21076847. https://doi.org/10.1051/ijmqe/2015011.

Bessen, J., Impink, S. M., and Seamans, R., Gdpr and the importance of data to ai startups *. https://doi.org/10.2139/ssrn.3576714.

Boudreaux, E. D., Ary, R. D., Mandry, C. V., and McCabe, B., Determinants of patient satisfaction in a large, municipal ED: The role of demographic variables, visit characteristics, and patient perceptions. American J. Emerg. Med. 18(4):394–400, 2000. ISSN 07356757. https://doi.org/10.1053/ajem.2000.7316.

Bruck, O., Sanmar, E., Ponkilainen, V., Butzow, A., Reito, A., Kauppila, J., and Kuitunen, I., European health regulations reduce registry-based research, 2023. URL https://doi.org/10.1101/2024.03.20.24304569.

Mannis, S. A., Diehl, A. K., and Morris, M. D., Use of calendar and weather data to predict walk-in attendance. South Med. J. 6(74):709–712, 1981. https://doi.org/10.1097/00007611-198106000-00020.

Article  Google Scholar 

Eckart, A., Hauser, S. I., Kutz, A., Haubitz, S., Hausfater, P., Amin, D., Amin, A., Huber, A., Mueller, B., and Schuetz, P., Combination of the National Early Warning Score (NEWS) and inflammatory biomarkers for early risk stratification in emergency department patients: Results of a multinational, observational study. BMJ Open. 9(1):1–11, 2019. ISSN 20446055. https://doi.org/10.1136/bmjopen-2018-024636.

Eidstø, A., Ylä-Mattila, J., Tuominen, J., Huhtala, H., Palomäki, A., and Koivistoinen, T., Emergency department crowding increases 10-day mortality for non-critical patients: a retrospective observational study. Int. Emerg. Med. (0123456789), 2023. ISSN 19709366. https://doi.org/10.1007/s11739-023-03392-8.

Eurostat. Population structure and ageing. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing#The_share_of_elderly_people_continues_to_increase, 2024. Accessed: 2024-07-24.

Florek, P., and Zagdański, A., Benchmarking state-of-the-art gradient boosting algorithms for classification. 5 2023. arXiv:2305.17094

Gildenblat, J., A python library for confidence intervals. https://github.com/jacobgil/confidenceinterval, 2023.

Gul, M., and Celik, E., An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments. Health Syst. 00(00):1–22, 2018. ISSN 20476973. https://doi.org/10.1080/20476965.2018.1547348.

Guttmann, A., Schull, M. J., Vermeulen, M. J., and Stukel, T. A., Association between waiting times and short term mortality and hospital admission after departure from emergency department: Population based cohort study from Ontario, Canada. Bmj. 342(7809), 2011. ISSN 17561833. https://doi.org/10.1136/bmj.d2983.

Harrou, F., Dairi, A., Kadri, F., and Sun, Y., Forecasting emergency department overcrowding: A deep learning framework. Chaos, Solitons Fractals. 139:110247, 2020. ISSN 09600779. https://doi.org/10.1016/j.chaos.2020.110247.

Hoot, N. R., LeBlanc, L. J., Jones, I., Levin, S. R., Zhou, C., Gadd, C. S., and Aronsky, D., Forecasting Emergency Department Crowding: A Discrete Event Simulation. Annal. Emerg. Med. 52(2):116–125, 2008. ISSN 01960644. https://doi.org/10.1016/j.annemergmed.2007.12.011.

Hoot, N. R., LeBlanc, L. J., Jones, I., Levin, S. R., Zhou, C., Gadd, C. S., and Aronsky, D., Forecasting Emergency Department Crowding: A Prospective, Real-time Evaluation. J. American Med. Inf. Assoc. 16(3):338–345, 2009. ISSN 10675027. https://doi.org/10.1197/jamia.M2772.

Jo, S., Jin, Y. H., Lee, J. B., Jeong, T., Yoon, J., and Park, B., Emergency department occupancy ratio is associated with increased early mortality. J. Emerg. Med. 46(2):241–249, 2014. ISSN 07364679. https://doi.org/10.1016/j.jemermed.2013.05.026.

Jones, S., Moulton, C., Swift, S., Molyneux, P., Black, S., Mason, N., Oakley, R., and Mann, C., Association between delays to patient admission from the emergency department and all-cause 30-day mortality. Emerg. Med. J. pages 168–173, 2022. ISSN 14720213. https://doi.org/10.1136/emermed-2021-211572.

Kadri, F., Dairi, A., Harrou, F., and Sun, Y., Towards accurate prediction of patient length of stay at emergency department: a gan-driven deep learning framework. J. Ambient Intell. Human. Comput. 14:11481–11495, 9 2023. ISSN 18685145. https://doi.org/10.1007/s12652-022-03717-z.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T. Y., LightGBM: A highly efficient gradient boosting decision tree. Advan. Neural Inf. Process. Syst. 2017-Decem(Nips):3147–3155, 2017. ISSN 10495258.

Kulstad, E. B., Sikka, R., Sweis, R. T., Kelley, K. M., and Rzechula, K. H., ED overcrowding is associated with an increased frequency of medication errors. American J. Emerg. Med. 28(3):304–309, 2010. ISSN 07356757. https://doi.org/10.1016/j.ajem.2008.12.014.

Lundberg, S. M., and Lee, S. I., A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017-December(Section 2):4766–4775, 2017. ISSN 10495258.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V., The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36(1):54–74, 2020. ISSN 01692070. https://doi.org/10.1016/j.ijforecast.2019.04.014.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V., M5 accuracy competition: Results, findings, and conclusions. Int. J. Forecast. 38(4):1346–1364, 2022. ISSN 01692070. https://doi.org/10.1016/j.ijforecast.2021.11.013.

McCarthy, M. L., Zeger, S. L., Ding, R., Levin, S. R., Desmond, J. S., Lee, J., and Aronsky, D., Crowding Delays Treatment and Lengthens Emergency Department Length of Stay, Even Among High-Acuity Patients. Ann. Emerg. Med. 54(4):492–503.e4, 2009. ISSN 10976760. https://doi.org/10.1016/j.annemergmed.2009.03.006.

Morley, C., Unwin, M., Peterson, G. M., Stankovich, J., and Kinsman, L., Emergency department crowding: A systematic review of causes, consequences and solutions. 13(8):1–42, 2018. ISSN 19326203. https://doi.org/10.1371/journal.pone.0203316.

Petsis, S., Karamanou, A., Kalampokis, E., and Tarabanis, K., Forecasting and explaining emergency department visits in a public hospital. J. Intell. Inf. Syst. 59(2):479–500, 2022. ISSN 15737675. https://doi.org/10.1007/s10844-022-00716-6.

Peukert, C., Bechtold, S., Batikas, M., and Kretschmer, T., Regulatory spillovers and data governance: Evidence from the gdpr. Marketing Sci. 41:318–340, 7 2022. ISSN 1526548X. https://doi.org/10.1287/mksc.2021.1339.

Pines, J. M., and Hollander, J. E., Emergency Department Crowding Is Associated With Poor Care for Patients With Severe Pain. Ann. Emerg. Med. 51(1):1–5, 2008. ISSN 01960644. https://doi.org/10.1016/j.annemergmed.2007.07.008.

Reboredo, J. C., Barba-Queiruga, J. R., Ojea-Ferreiro, J., and Reyes-Santias, F., Forecasting emergency department arrivals using INGARCH models. Health Econ. Rev. 13(1):1–12, 2023. ISSN 21911991. https://doi.org/10.1186/s13561-023-00456-5.

Ribeiro, M. T., Singh, S., and Guestrin, C., why should i trust you? explaining the predictions of any classifier. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, volume 13-17-August-2016, pages 1135–1144. Association for Computing Machinery, 8 2016. ISBN 9781450342322. https://doi.org/10.1145/2939672.2939778.

Richardson, D. B., Increase in patient mortality at 10 days associated with emergency department overcrowding. Med. J. Australia 184(5):213–216, 2006. ISSN 0025729X. https://doi.org/10.5694/j.1326-5377.2006.tb00204.x.

Schull, M. J., Morrison, L. J., Vermeulen, M., and Redelmeier, D. A., Emergency department overcrowding and ambulance transport delays for patients with chest pain. CMAJ. Canadian Med. Assoc. J. 168(3):277–283, 2003. ISSN 08203946. https://doi.org/10.1016/j.annemergmed.2003.12.016.

Sharafat, A. R., and Bayati, M., PatientFlowNet: A Deep Learning Approach to Patient Flow Prediction in Emergency Departments. IEEE Access. 9:45552–45561, 2021. ISSN 21693536.https://doi.org/10.1109/ACCESS.2021.3066164.

Stewart, J., Innes, M., and Goudie, A., The potential impact of artificial intelligence on emergency department overcrowding and access block. EMA - Emergency Medicine Australasia. 36(4):632–634, 2024. ISSN 17426723. https://doi.org/10.1111/1742-6723.14461.

Sun, B. C., Adams, J., Orav, E. J., Rucker, D. W., Brennan, T. A., and Burstin, H. R., Determinants of patient satisfaction and willingness to return with emergency care. Annal. Emerg. Med. 35(5):426–434, 2000. ISSN 01960644. https://doi.org/10.1016/s0196-0644(00)70003-5.

Sun, B. C., Hsia, R. Y., Weiss, R. E., Zingmond, D., Liang, L. J., Han, W., McCreath, H., and Asch, S. M., Effect of emergency department crowding on outcomes of admitted patients. Annal. Emerg. Med. 61(6):605–611.e6, 2013. ISSN 10976760. https://doi.org/10.1016/j.annemergmed.2012.10.026.

Takahashi, K., Yamamoto, K., Kuchiba, A., and Koyama, T., Confidence interval for micro-averaged f 1 and macro-averaged f 1 scores. Appl. Intell. 52:4961–4972, 3 2022. ISSN 15737497. https://doi.org/10.1007/s10489-021-02635-5.

Tuominen, J., Koivistoinen, T., Kanniainen, J., Oksala, N., Palomäki, A., and Roine, A., Early warning software for emergency department crowding. J. Med. Syst. 47(66), 2023. https://doi.org/10.1007/s10916-023-01958-9.

Tuominen, J., Pulkkinen, E., Peltonen, J., Kanniainen, J., Oksala, N., Palomäki, A., and Roine, A., Forecasting emergency department occupancy with advanced machine learning models and multivariable input. Int. J. Forecast. 10 2024. ISSN 01692070. https://doi.org/10.1016/j.ijforecast.2023.12.002.

Ugglas, B., Lindmarker, P., Ekelund, U., Djarv, T., and Holzmann, M. J., Emergency department crowding and mortality in 14 Swedish emergency departments, a cohort study leveraging the Swedish Emergency Registry (SVAR). PLoS ONE. 16(3 March):1–15, 2021. ISSN 19326203. https://doi.org/10.1371/journal.pone.0247881.

Xie, F., Zhou, J., Lee, J. W., Tan, M., Li, S., Rajnthern, L. S., Chee, M. L., Chakraborty, B., Wong, A. K. I., Dagan, A., Ong, M. E. H., Gao, F., and Liu, N., Benchmarking emergency department prediction models with machine learning and public electronic health records. Scientific Data. 9(1):1–12, 2022. ISSN 20524463. https://doi.org/10.1038/s41597-022-01782-9.

Zhang, Z., Bokhari, F., Guo, Y., and Goyal, H., Prolonged length of stay in the emergency department and increased risk of hospital mortality in patients with sepsis requiring ICU admission. Emergency Med. J. 36(2):82–87, 2019. ISSN 14720213. https://doi.org/10.1136/emermed-2018-208032.

留言 (0)

沒有登入
gif