Blackcurrant (Ribes nigrum L.) and Its Association with Donepezil Restore Cognitive Impairment, Suppress Oxidative Stress and Pro-inflammatory Responses, and Improve Purinergic Signaling in a Scopolamine-Induced Amnesia Model in Mice

Cortez RE, Gonzalez de Mejia E (2019) Blackcurrants (Ribes nigrum): a review on chemistry, processing, and health benefits. J Food Sci 84:2387–2401. https://doi.org/10.1111/1750-3841.14781

Article  PubMed  Google Scholar 

Jia N, Xiong YL, Kong B, Liu Q, Xia X (2012) Radical scavenging activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on gastric cancer cell proliferation via induction of apoptosis. J Funct Foods 4:382–390. https://doi.org/10.1016/j.jff.2012.01.009

Article  Google Scholar 

Karjalainen R, Anttonen M, Saviranta N, Stewart D, McDougall GJ, Hilz H, Mattila P, Törrönen R (2009) A review on bioactive compounds in black currants (Ribes nigrum L.) and their potential health-promoting properties. Acta Hortic 839:301–307. https://doi.org/10.17660/ActaHortic.2009.839.38

Article  Google Scholar 

Gopalan A, Reuben SC, Ahmed S, Darvesh AS, Hohmann J, Bishayee A (2012) The health benefits of blackcurrants. Food Funct 3:795–809. https://doi.org/10.1039/c2fo30058c

Article  PubMed  Google Scholar 

Shimada M, Maeda H, Nanashima N, Yamada K, Nakajima A (2022) Anthocyanin-rich blackcurrant extract improves long-term memory impairment and emotional abnormality in senescence-accelerated mice. J Food Biochem 46:e14295. https://doi.org/10.1111/jfbc.14295

Article  PubMed  Google Scholar 

Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves AO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM (2021) Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 148:105085. https://doi.org/10.1016/j.neuint.2021.105085

Article  PubMed  Google Scholar 

Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves AO, Borsoi FT, Bagatini MD (2021) Anthocyanins and Flavonols: Therapeutic Implications of Natural Compounds on Cancer. In: Chakraborti S, Ray BK, Roychowdhury S (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_139-1

Chapter  Google Scholar 

Da Costa P, Schetinger MRC, Baldissarelli J, Stefanello N, Lopes TF, Reichert KP, Assmann CE, Bottari NB, Miron VV, Vargas FFA, Gutierres JM, da Cruz IBM, Morsch VM (2024) Blackcurrant (Ribes nigrum L.) improves cholinergic signaling and protects against chronic scopolamine-induced memory impairment in mice. J Psychopharmacol 2024:1–14. https://doi.org/10.1177/02698811241273776

Article  Google Scholar 

Winter AN, Bickford PC (2019) Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants (Basel) 8:333. https://doi.org/10.3390/antiox8090333

Article  PubMed  Google Scholar 

Shih PH, Chan YC, Liao JW, Wang MF, Yen GC (2010) Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J Nutr Biochem 21:598–605. https://doi.org/10.1016/j.jnutbio.2009.03.008

Article  PubMed  Google Scholar 

Jia N, Li T, Diao X, Kong B (2014) Protective effects of black currant (Ribes nigrum L.) extract on hydrogen peroxide-induced damage in lung fibroblast MRC-5 cells in relation to the antioxidant activity. J Funct Foods 11:142–151. https://doi.org/10.1016/j.jff.2014.09.011

Article  Google Scholar 

Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897. https://doi.org/10.1016/j.jff.2015.06.018

Article  Google Scholar 

Gutierres JM, Carvalho FB, Schetinger MR, Agostinho P, Marisco PC, Vieira JM, Rosa MM, Bohnert C, Rubin MA, Morsch VM, Spanevello R, Mazzanti CM (2014) Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int J Dev Neurosci 33:88–97. https://doi.org/10.1016/j.ijdevneu.2013.12.006

Article  PubMed  Google Scholar 

Gutierres JM, Carvalho FB, Schetinger MR, Marisco P, Agostinho P, Rodrigues M, Rubin MA, Schmatz R, da Silva CR, de Cognato GP, Farias JG, Signor C, Morsch VM, Mazzanti CM, Bogo M, Bonan CD, Spanevello R (2014) Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s type. Life Sci 96:7–17. https://doi.org/10.1016/j.lfs.2013.11.014

Article  PubMed  Google Scholar 

Mattioli R, Francioso A, Mosca L, Silva P (2020) Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25:3809. https://doi.org/10.3390/molecules25173809

Article  PubMed  PubMed Central  Google Scholar 

Pacheco SM, Soares MSP, Gutierres JM, Gerzson MFB, Carvalho FB, Azambuja JH, Schetinger MRC, Stefanello FM, Spanevello RM (2018) Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J Nutr Biochem 56:193–204. https://doi.org/10.1016/j.jnutbio.2018.02.014

Article  PubMed  Google Scholar 

Silva T, Reis J, Teixeira J, Borges F (2014) Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 15:116–145. https://doi.org/10.1016/j.arr.2014.03.008

Article  PubMed  Google Scholar 

Guo C, Shen J, Meng Z, Yang X, Li F (2016) Neuroprotective effects of polygalacic acid on scopolamine-induced memory deficits in mice. Phytomedicine 23:149–155. https://doi.org/10.1016/j.phymed.2015.12.009

Article  PubMed  Google Scholar 

Pepeu G, Giovannini MG (2010) Cholinesterase inhibitors and memory. Chem Biol Interact 187:403–408. https://doi.org/10.1016/j.cbi.2009.11.018

Article  PubMed  Google Scholar 

Birks JS, Harvey RJ (2018) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001190.pub3

Article  PubMed  PubMed Central  Google Scholar 

Li J, Gao L, Sun K, Xiao D, Li W, Xiang L, Qi J (2016) Benzoate fraction from Gentiana rigescens Franch alleviates scopolamine-induced impaired memory in mice model in vivo. J Ethnopharmacol 193:107–116. https://doi.org/10.1016/j.jep.2016.08.001

Article  PubMed  Google Scholar 

Park HR, Lee H, Park H, Cho WK, Ma JY (2016) Fermented sipjeondaebo-tang alleviates memory deficits and loss of hippocampal neurogenesis in scopolamine-induced amnesia in mice. Sci Rep 6:22405. https://doi.org/10.1038/srep22405

Article  PubMed  PubMed Central  Google Scholar 

Burnstock G (2017) Purinergic signalling and neurological diseases: an update. CNS Neurol Disord Drug Targets 16:257–265. https://doi.org/10.2174/1871527315666160922104848

Article  PubMed  Google Scholar 

Illes P, Ulrich H, Chen JF, Tang Y (2023) Purinergic receptors in cognitive disturbances. Neurobiol Dis 185:106229. https://doi.org/10.1016/j.nbd.2023.106229

Article  PubMed  Google Scholar 

Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6:162. https://doi.org/10.1038/s41392-021-00553-z

Article  PubMed  PubMed Central  Google Scholar 

Ademiluyi AO, Ogunsuyi OB, Oboh G (2016) Alkaloid extracts from Jimson weed (Datura stramonium L.) modulate purinergic enzymes in rat brain. Neurotoxicology 56:107–117. https://doi.org/10.1016/j.neuro.2016.06.012

Article  PubMed  Google Scholar 

Ademosun AO, Adebayo AA, Popoola TV, Oboh G (2022) Shaddock (Citrus maxima) peels extract restores cognitive function, cholinergic and purinergic enzyme systems in scopolamine-induced amnesic rats. Drug Chem Toxicol 45(3):1073–1080. https://doi.org/10.1080/01480545.2020.1808668

Article  PubMed  Google Scholar 

Bagatini MD, dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB (2018) The Impact of purinergic system enzymes on noncommunicable, neurological, and degenerative diseases. J Immunol Res. https://doi.org/10.1155/2018/4892473

Article  PubMed  PubMed Central  Google Scholar 

Erb L, Woods LT, Khalafalla MG, Weisman GA (2019) Purinergic signaling in Alzheimer’s disease. Brain Res Bull 151:25–37. https://doi.org/10.1016/j.brainresbull.2018.10.014

Article  PubMed  Google Scholar 

Woods LT, Ajit D, Camden JM, Erb L, Weisman GA (2016) Purinergic receptors as potential therapeutic targets in Alzheimer’s disease. Neuropharmacology 104:169–179. https://doi.org/10.1016/j.neuropharm.2015.10.031

Article  PubMed  Google Scholar 

Reichert KP, Castro MFV, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch VMM, Schetinger MRC (2021) Diabetes and hypertension: pivotal involvement of purinergic signaling. Biomed Pharmacother 137:111273. https://doi.org/10.1016/j.biopha.2021.111273

Article 

留言 (0)

沒有登入
gif