Leal MC, Sheridan C, Osinga R, Dioníasio G, Rocha RJM, Silva B, et al. Marine Microorganism-Invertebrate assemblages: perspectives to solve the Supply Problem in the initial steps of Drug Discovery. Mar Drugs. 2014;12:3929.
Article CAS PubMed PubMed Central Google Scholar
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: an overview. J Anim Physiol Anim Nutr (Berl). 2022;106:441–69.
Article CAS PubMed Google Scholar
Infante-Villamil S, Huerlimann R, Jerry DR. Microbiome diversity and dysbiosis in aquaculture. Rev Aquac. 2021;13:1077–96.
Bogatyrenko EA, Buzoleva LS. Characterization of the gut bacterial community of the Japanese sea cucumber Apostichopus japonicus. Microbiol (Russian Federation). 2016;85:116–23.
Plotieau T, Lavitra T, Gillan DC, Eeckhaut I. Bacterial diversity of the sediments transiting through the gut of Holothuria scabra (Holothuroidea; Echinodermata). Mar Biol. 2013;160:3087–101.
Zhang X, Nakahara T, Murase S, Nakata H, Inoue T, Kudo T. Physiological characterization of aerobic culturable bacteria in the intestine of the sea cucumber Apostichopus japonicus. J Gen Appl Microbiol. 2013;59:1–10.
Article CAS PubMed Google Scholar
Becker P, Gillan D, Lanterbecq D, Jangoux M, Rasolofonirina R, Rakotovao J, et al. The skin ulceration disease in cultivated juveniles of Holothuria scabra (Holothuroidea, Echinodermata). Aquaculture. 2004;242:13–30.
Li H, Qiao G, Gu JQ, Zhou W, Li Q, Woo SH, et al. Phenotypic and genetic characterization of bacteria isolated from diseased cultured sea cucumber Apostichopus japonicus in northeastern China. Dis Aquat Organ. 2010;91:223–35.
Article CAS PubMed Google Scholar
Chi C, Liu JY, Fei SZ, Zhang C, Chang YQ, Liu XL, et al. Effect of intestinal autochthonous probiotics isolated from the gut of sea cucumber (Apostichopus japonicus) on immune response and growth of A. japonicus. Fish Shellfish Immunol. 2014;38:367–73.
Article CAS PubMed Google Scholar
Yan Fjun, Tian X, li, Dong S, lin, Fang Z, heng, Yang G. Growth performance, immune response, and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a supplementary diet of the potential probiotic Paracoccus marcusii DB11. Aquaculture. 2014;420–421:105–11.
Enomoto M, Nakagawa S, Sawabe T. Microbial communities associated with holothurians: Presence of unique bacteria in the coelomic fluid. Microbes Environ. 2012;27:300–5.
Article PubMed PubMed Central Google Scholar
Kim TY, Lee JJ, Kim BS, Choi SH. Whole-body microbiota of sea cucumber (Apostichopus japonicus) from South Korea for improved seafood management. J Microbiol Biotechnol. 2017;27:1753–62.
Article CAS PubMed Google Scholar
Pagán-Jiménez M, Ruiz-Calderón JF, Dominguez-Bello MG, García-Arrarás JE. Characterization of the intestinal microbiota of the sea cucumber Holothuria glaberrima. PLoS ONE. 2019;14:1–16.
Zhang Z, Xing R, Lv Z, Shao Y, Zhang W, Zhao X, et al. Analysis of gut microbiota revealed Lactococcus garviaeae could be an indicative of skin ulceration syndrome in farmed sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2018;80:148–54.
Feng Q-M, Ru X-S, Zhang L-B, Zhang S-Y, Yang H-S. Differences in feeding behavior and intestinal microbiota may relate to different growth rates of sea cucumbers (Apostichopus japonicus). Aquaculture. 2022;559:738368.
Sha Y, Liu M, Wang B, Jiang K, Sun G, Wang L. Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates. Microbiol (Russian Federation). 2016;85:109–15.
Yamazaki Y, Sakai Y, Mino S, Sawabe T. An annual faecal 16S amplicon sequencing of individual sea cucumber (Apostichopus japonicus) demonstrates the feeding behaviours against eukaryotes in natural environments. Aquac Res. 2020;51:3602–8.
Yamazaki Y, Meirelles PM, Mino S, Suda W, Oshima K, Hattori M, et al. Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps. Sci Rep. 2016;6:1–10.
Yang Y, Chen N, Chen T. Inference of environmental factor-microbe and microbe-microbe associations from Metagenomic Data using a hierarchical bayesian statistical model. Cell Syst. 2017;4:129–e1375.
Article CAS PubMed Google Scholar
Yang G, Peng M, Tian X, Dong S. Molecular ecological network analysis reveals the effects of probiotics and florfenicol on intestinal microbiota homeostasis: an example of sea cucumber. Sci Rep. 2017;7:1–12.
Wang L, Zhao X, Xu H, Bao X, Liu X, Chang Y, et al. Characterization of the bacterial community in different parts of the gut of sea cucumber (Apostichopus japonicus) and its variation during gut regeneration. Aquac Res. 2018;49:1987–96.
Weigel BL. Sea cucumber intestinal regeneration reveals deterministic assembly of the gut microbiome. Appl Environ Microbiol. 2020;86:1–19.
Zhang H, Wang Q, Liu S, Huo D, Zhao J, Zhang L, et al. Genomic and metagenomic insights into the microbial community in the regenerating intestine of the sea cucumber Apostichopus japonicus. Front Microbiol. 2019;10 JUN:1–11.
León-Palmero E, Joglar V, Álvarez PA, Martín-Platero A, Llamas I, Reche I. Diversity and antimicrobial potential in sea anemone and holothurian microbiomes. PLoS ONE. 2018;13:1–21.
Purcell SW, Conand C, Uthicke S, Byrne M. Ecological roles of Exploited Sea cucumbers. Oceanogr Mar Biology. 2016;54:367–86.
Hamel JF, Eeckhaut I, Conand C, Sun J, Caulier G, Mercier A. Global knowledge on the commercial sea cucumber Holothuria scabra. Adv Mar Biol. 2022;91:1–286.
Hamel JF, Conand C, Pawson DL, Mercier A. The sea cucumber Holothuria scabra. Holothuroidea: Echinodermata; Its biology and exploitation as Beche-de-mer. 2001.
Purcell SW, Williamson DH, Ngaluafe P. Chinese market prices of beche-de-mer: implications for fisheries and aquaculture. Mar Policy. 2018;91:58–65.
Siahaan EA, Pangestuti R, Munandar H, Kim SK. Cosmeceuticals properties of sea cucumbers: prospects and trends. Cosmetics. 2017;4:1–12.
Hamel JF, Mercier A, Conand C, Purcell S, Toral-Granda T-G, Gamboa R. Holothuria scabra. The IUCN Red List of Threatened Species 2013. 2013. https://www.iucnredlist.org/species/180257/1606648. Accessed 17 Oct 2023.
Altamirano JP, Sinsona MJ, Caasi OJC, de la Torre-de la Cruz M, Uy WH, Noran-Baylon R, et al. Factors affecting the spatio-temporal variability in the production of sandfish Holothuria scabra juveniles in floating hapa ocean nursery systems. Aquaculture. 2021;541:736743.
Altamirano JP, Noran-Baylon RD. Nursery culture of sandfish Holothuria scabra in sea-based floating hapa nets: effects of initial stocking density, size grading and net replacement frequency. Aquaculture. 2020;526:735379.
Juinio-Meñez MA, de Peralta GM, Dumalan RJP, Edullantes CMA, Catbagan TO. Ocean nursery systems for scaling up juvenile sandfish (Holothuria scabra) production: ensuring opportunities for small fishers. In: Asia–Pacific Tropical Sea Cucumber Aquaculture. ACIAR Proceedings. Austrailian Centre for International Agricultural Research; 2012. pp. 57–62.
Yussuf YS, Yahya S. Stocking density, growth and survival rate of Post-settled juveniles of Holothuria scabra (Jaeger 1833) reared in an ocean-based floating Hapa. Tanzan J Sci. 2021.
Juinio-Meñez MA, Tech ED, Ticao IP, Gorospe JR, Edullantes CMA, Rioja RAV. Adaptive and integrated culture production systems for the tropical sea cucumber Holothuria scabra. Fish Res. 2017;186:502–13.
Purcell SW, Hair CA, Mills DJ. Sea cucumber culture, farming and sea ranching in the tropics: Progress, problems and opportunities. Aquaculture. August 2012;2014:368–9.
Qiu T, Zhang L, Zhang T, Bai Y, Yang H. Effect of culture methods on individual variation in the growth of sea cucumber. Chin J Oceanol Limnol. 2014;32:737–42.
Lv W, Zheng X, Kuang Y, Cao D, Yan Y, Sun X. QTL variations for growth-related traits in eight distinct families of common carp (Cyprinus carpio). BMC Genet. 2016;17:1–12.
Salas-Leiton E, Anguís V, Rodríguez-Rua A, Cañavate JP. High stocking density and food restriction have minimum impact on size dispersal of cultured Senegalese sole (Solea senegalensis, Kaup 1858) juveniles. Evidence for individual growth being regulated by population structure. Aquac Eng. 2011;45:43–50.
Xiong J, Dai W, Zhu J, Liu K, Dong C, Qiu Q. The underlying ecological processes of Gut Microbiota among Cohabitating Retarded, overgrown and normal shrimp. Microb Ecol. 2017;73:988–99.
Choi M-J, Oh YD, Kim YR, Lim HK, Kim J-M. Intestinal microbial diversity is higher in Pacific abalone (Haliotis discus hannai) with slower growth rates. Aquaculture. 2021;537:736500.
Dai W, Dong Y, Ye J, Xue Q, Lin Z. Gut microbiome composition likely affects the growth of razor clam sinonovacula constricta. Aquaculture. 2022;550:737847.
留言 (0)