Hood, L. & Price, N. The Age of Scientific Wellness: Why the Future of Medicine is Personalized, Predictive, Data-Rich, and in Your Hands (Harvard Univ. Press, 2023).
Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).
Lee, Y., Song, W. J. & Sun, J. Y. Hydrogel soft robotics. Mater. Today Phys. 15, 100258 (2020).
Liu, X., Liu, J., Lin, S. & Zhao, X. Hydrogel machines. Mater. Today 36, 102–124 (2020).
Herrmann, A., Haag, R. & Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 10, 2100062 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ying, B. & Liu, X. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. iScience 24, 103174 (2021).
Article PubMed PubMed Central Google Scholar
Xiong, Y., Han, J., Wang, Y., Wang, Z. L. & Sun, Q. Emerging iontronic sensing: materials, mechanisms, and applications. Research 2022, 9867378 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xiao, K., Wan, C., Jiang, L., Chen, X. & Antonietti, M. Bioinspired ionic sensory systems: the successor of electronics. Adv. Mater. 32, 2000218 (2020).
Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).
Article CAS PubMed Google Scholar
de Vasconcelos, L. S. et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chem. Rev. 122, 13043–13107 (2022).
Kimmel, D. W., LeBlanc, G., Meschievitz, M. E. & Cliffel, D. E. Electrochemical sensors and biosensors. Anal. Chem. 84, 685–707 (2012).
Article CAS PubMed Google Scholar
Choi, N.-S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012).
Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).
Article CAS PubMed Google Scholar
Bard, A. J., Faulkner, L. R., Leddy, J. & Zoski, C. G. Electrochemical Methods: Fundamentals and Applications Vol. 2 (Wiley, 1980).
Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).
Article CAS PubMed Google Scholar
Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th Anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).
Article CAS PubMed Google Scholar
Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).
Article PubMed PubMed Central Google Scholar
Yang, J. C. et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).
Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).
Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
Article CAS PubMed Google Scholar
Zhang, S. et al. Stretchable electrets: nanoparticle–elastomer composites. Nano Lett. 20, 4580–4587 (2020).
Article CAS PubMed Google Scholar
Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).
Article CAS PubMed PubMed Central Google Scholar
Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).
Nie, B., Xing, S., Brandt, J. D. & Pan, T. Droplet-based interfacial capacitive sensing. Lab Chip 12, 1110–1118 (2012).
Article CAS PubMed Google Scholar
Nie, B., Li, R., Brandt, J. D. & Pan, T. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 14, 1107–1116, (2014).
Article CAS PubMed Google Scholar
Nie, B., Li, R., Cao, J., Brandt, J. D. & Pan, T. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 27, 6055–6062 (2015).
Article CAS PubMed Google Scholar
Zhu, Z., Li, R. & Pan, T. Imperceptible epidermal–iontronic interface for wearable sensing. Adv. Mater. 30, 1705122 (2018).
Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018).
Article CAS PubMed PubMed Central Google Scholar
Chang, Y. et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33, 2003464 (2021).
Lu, P. et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Sci. Bull. 66, 1091–1100 (2021).
Zhu, P. et al. Skin–electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yang, R. et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat. Commun. 14, 2907 (2023).
Article CAS PubMed PubMed Central Google Scholar
Cho, S. H. et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Appl. Mater. Interfaces 9, 10128–10135 (2017).
Article CAS PubMed Google Scholar
Li, R. et al. Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29, 1700253 (2017).
Chhetry, A., Kim, J., Yoon, H. & Park, J. Y. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl. Mater. Interfaces 11, 3438–3449 (2019).
Article CAS PubMed Google Scholar
Bai, N. et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020).
Article CAS PubMed PubMed Central Google Scholar
Xiao, Y. et al. Multilayer double-sided microstructured flexible iontronic pressure sensor with a record-wide linear working range. ACS Sens. 6, 1785–1795 (2021).
留言 (0)