α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition

Chuang DT, Shih VE, Wynn RM (2019) Maple syrup urine disease (branched-Chain Ketoaciduria). In: Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA (eds) The online metabolic and molecular bases of inherited disease. McGraw-Hill, New York City (NY), pp 1–74

Google Scholar 

Strauss KA, Puffenberger EG, Carson VJ (2020) Maple syrup urine disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, Amemiya A (eds) GeneReviews® [Internet]. University of Washington, Seattle (WA), pp 1–33

Google Scholar 

Chen T, Lu D, Xu F et al (2023) Newborn screening of maple syrup urine disease and the effect of early diagnosis. Clin Chim Acta 548:117483. https://doi.org/10.1016/J.CCA.2023.117483

Article  CAS  PubMed  Google Scholar 

Li L, Mao X, Yang N et al (2023) Identification of gene mutations in six Chinese patients with maple syrup urine disease. Front Genet 14:1132364. https://doi.org/10.3389/FGENE.2023.1132364

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muelly ER, Moore GJ, Bunce SC et al (2013) Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest 123:1809–1820. https://doi.org/10.1172/JCI67217

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strauss KA, Carson VJ, Soltys K et al (2020) Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): treatment, biomarkers, and outcomes. Mol Genet Metab 129:193–206. https://doi.org/10.1016/J.YMGME.2020.01.006

Article  CAS  PubMed  Google Scholar 

Schönberger S, Schweiger B, Schwahn B et al (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75. https://doi.org/10.1016/j.ymgme.2004.01.016

Article  CAS  PubMed  Google Scholar 

Allahwala A, Ahmed S, Afroze B (2021) Maple syrup urine disease: magnetic resonance imaging findings in three patients. J Pak Med Assoc 71:1309–1313. https://doi.org/10.47391/JPMA.1341

Article  PubMed  Google Scholar 

Cheng A, Han L, Feng Y et al (2017) MRI and clinical features of maple syrup urine disease: preliminary results in 10 cases. Diagn Interv Radiol 23:398–402. https://doi.org/10.5152/DIR.2017.16466

Article  PubMed  PubMed Central  Google Scholar 

Kathait AS, Puac P, Castillo M (2018) Imaging findings in maple syrup urine disease: a Case Report. J Pediatr Neurosci 13:103–105. https://doi.org/10.4103/JPN.JPN_38_17

Article  PubMed  PubMed Central  Google Scholar 

Contrusciere V, Paradisi S, Matteucci A, Malchiodi-Albedi F (2010) Branched-chain amino acids induce neurotoxicity in rat cortical cultures. Neurotox Res 17:392–398. https://doi.org/10.1007/S12640-009-9115-0

Article  CAS  PubMed  Google Scholar 

Kasinski A, Doering CB, Danner DJ (2004) Leucine toxicity in a neuronal cell model with inhibited branched chain amino acid catabolism. Brain Res Mol Brain Res 122:180–187. https://doi.org/10.1016/J.MOLBRAINRES.2003.08.023

Article  CAS  PubMed  Google Scholar 

Mescka CP, Rosa AP, Schirmbeck G et al (2016) L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically Induced Chronic Model of MSUD. Mol Neurobiol 53:6007–6017. https://doi.org/10.1007/S12035-015-9500-Z

Article  CAS  PubMed  Google Scholar 

Pilla C, De Oliveira Cardozo RF, Dutra-Filho CS et al (2003) Effect of leucine administration on creatine kinase activity in rat brain. Metab Brain Dis 18:17–25. https://doi.org/10.1023/A:1021974517837

Article  CAS  PubMed  Google Scholar 

Vilela TC, Scaini G, Furlanetto CB et al (2017) Apoptotic signaling pathways induced by acute administration of branched-chain amino acids in an animal model of maple syrup urine disease. Metab Brain Dis 32:115–122. https://doi.org/10.1007/S11011-016-9892-0

Article  CAS  PubMed  Google Scholar 

Wessler LB, Ise K, Lemos IC et al (2020) Melatonin ameliorates oxidative stress and DNA damage of rats subjected to a chemically induced chronic model of maple syrup urine disease. Metab Brain Dis 35:905–914. https://doi.org/10.1007/S11011-020-00572-9

Article  CAS  PubMed  Google Scholar 

Bridi R, Braun CA, Zorzi GK et al (2005) α-Keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167. https://doi.org/10.1007/s11011-005-4152-8

Article  CAS  PubMed  Google Scholar 

Funchal C, Latini A, Jacques-Silva MC et al (2006) Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain α-keto acids accumulating in maple syrup urine disease. Neurochem Int 49:640–650. https://doi.org/10.1016/J.NEUINT.2006.05.007

Article  CAS  PubMed  Google Scholar 

Amaral AU, Leipnitz G, Fernandes CG et al (2010) α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84. https://doi.org/10.1016/J.BRAINRES.2010.02.018

Article  CAS  PubMed  Google Scholar 

Ribeiro CA, Sgaravatti ÂM, Rosa RB et al (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 33:114–124. https://doi.org/10.1007/S11064-007-9423-9

Article  CAS  PubMed  Google Scholar 

Sgaravatti AM, Rosa RB, Schuck PF et al (2003) Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639:232–238. https://doi.org/10.1016/J.BBADIS.2003.09.010

Article  CAS  PubMed  Google Scholar 

Funchal C, Gottfried C, De Vieira LM et al (2004) Evidence that the branched chain α-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia 48:230–240. https://doi.org/10.1002/glia.20072

Article  PubMed  Google Scholar 

Amaral AU, Cecatto C, Castilho RF, Wajner M (2016) 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria. J Neurochem 137:62–75. https://doi.org/10.1111/JNC.13544

Article  CAS  PubMed  Google Scholar 

Makrecka-Kuka M, Krumschnabel G, Gnaiger E (2015) High-resolution respirometry for simultaneous measurement of Oxygen and Hydrogen Peroxide fluxes in permeabilized cells, tissue homogenate and isolated Mitochondria. Biomolecules 5:1319–1338. https://doi.org/10.3390/BIOM5031319

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langenbeck U, Wendel U, Mench-Hoinowski A et al (1978) Correlations between branched-chain amino acids and branched-chain alpha-keto acids in blood in maple syrup urine disease. Clin Chim Acta 88:283–291. https://doi.org/10.1016/0009-8981(78)90433-3

Article  CAS  PubMed  Google Scholar 

Snyderman SE, Goldstein F, Sansaricq C, Norton PM (1984) The relationship between the branched chain amino acids and their alpha-ketoacids in maple syrup urine disease. Pediatr Res 18:851–853. https://doi.org/10.1203/00006450-198409000-00009

Article  CAS  PubMed  Google Scholar 

Lemasters JJ, HackenbrockA CR (1976) Continuous measurement and rapid kinetics of ATP synthesis in rat liver mitochondria, mitoplasts and inner membrane vesicles determined by firefly-luciferase luminescence. Eur J Biochem 67:1–10. https://doi.org/10.1111/J.1432-1033.1976.TB10625.X

Article  CAS  PubMed  Google Scholar 

Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24:7771–7778. https://doi.org/10.1523/JNEUROSCI.1842-04.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Figueira TR, Francisco A, Ronchi JA et al (2021) NADPH supply and the contribution of NAD(P) + transhydrogenase (NNT) to H2O2 balance in skeletal muscle mitochondria. Arch Biochem Biophys 707:108934. https://doi.org/10.1016/J.ABB.2021.108934

留言 (0)

沒有登入
gif