Azotobacter biodiversity in Egypt using microbiological, biochemical, and molecular-biology multidisciplinary approach

Aasfar A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y, Meftah Kadmiri I (2021) Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front Microbiol 12:628379. https://doi.org/10.3389/fmicb.2021.628379

Article  PubMed  PubMed Central  Google Scholar 

Abd-El-Malek Y (1971) Free-living nitrogen-fixing bacteria in Egyptian soils and their possible contribution to soil fertility. Plant Soil 35:423–442. https://doi.org/10.1007/BF02661869

Article  Google Scholar 

Abdel-Hamid MS, Elbaz A, Ragab A, Hamza H, El Halafawy K (2010) Identification and characterization of Azotobacter chroococcum isolated from some Egyptian soils. J Agric Chem Biotec 1:93–104. https://doi.org/10.21608/jacb.2010.88790

Article  Google Scholar 

Ahmad I, Sheikh M, Ahmad F (2005) Microbial diversity of rhizospheric soil with special reference to plant growth promoting isolates of Azotobacter. Biosci Biotech Res Asia 3:51–58. https://doi.org/10.3390/plants12030629

Article  CAS  Google Scholar 

Aung A, Sev TM, Mon AA, San Yu S (2020) Detection of abiotic stress tolerant Azotobacter species for enhancing plant growth promoting activities. J Sci Innov Res 9:48–53

Article  Google Scholar 

Badawi H, Fayez M (2014) Azotobacter-cereal panorama: Biodiversity and impacts on plant development and soil nitrogen income in gnotobiotic model system. Middle East j 3:144–154

Google Scholar 

Baldy-Chudzik K (2001) Rep-PCR-a variant to RAPD or an independent technique of bacteria genotyping? A comparison of the typing properties of rep-PCR with other recognised methods of genotyping of microorganisms. Acta Microbiol Pol 50(3–4):189–204

PubMed  CAS  Google Scholar 

Becking JH (1992) The family Azotobacteraceae. In: Balows A, Trüper GH, Dworkin M, Harder W, Sehleifer KH (eds) The prokaryotes, 2nd edn. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application, vol 4. Springer, Berlin Heidelberg New York Tokyo, pp 3144–3170

Bisset K, Baird-Parker A, Hale C, Jeynes M, Lawrence J (1957) The production of Gram-positive variants by Azotobacter chroococcum. Microbiol 16:572–575. https://doi.org/10.1099/00221287-16-3-572

Article  CAS  Google Scholar 

Brenner DJ, Staley JT, Krieg NR (2005) Classification of procaryotic organisms and the concept of bacterial speciation. Bergey’s Manual of Systematic Bacteriology. Springer, pp 27–32. https://doi.org/10.1007/0-387-28021-9_4

Chen LS, Figueredo A, Pedrosa FO, Hungria M (2000) Genetic characterization of soybean rhizobia in Paraguay. Appl Env Microbiol 66:5099–5103. https://doi.org/10.1128/AEM.66.11.5099-5103.2000

Article  CAS  Google Scholar 

Chen S-L, Tsai M-K, Huang Y-M, Huang C-H (2018) Diversity and characterization of Azotobacter isolates obtained from rice rhizosphere soils in Taiwan. Annals microbiol 68:17–26. https://doi.org/10.1007/s13213-017-1312-0

Article  CAS  Google Scholar 

Chennappa G, Naik M, Adkar-Purushothama C, Amaresh Y, Sreenivasa M (2016) PGP potential, abiotic stress tolerance and antifungal activity of Azotobacter strains isolated from paddy soils. Indian J Exp Biol 54:322–331

PubMed  CAS  Google Scholar 

CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (2018) CLSI standard M07, 11th edn. Clinical and Laboratory Standards Institute, Wayne, PA

Google Scholar 

Dudley N, Alexander S (2017) Agriculture and biodiversity: a review. Biodiv 18:45–49. https://doi.org/10.1080/14888386.2017.1351892

Article  Google Scholar 

Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nuc Acids Res 17:7843–7853. https://doi.org/10.1093/nar/17.19.7843

Article  CAS  Google Scholar 

El-Shanshoury AE-RR, Kenawy E-R, Amara AA, Mohamed SF, Salama AF, Kishk S (2018) Optimization of the culture medium using the Burman and Box-Behnken experimental designs for an enhanced production of alginate by Azotobacter vinelandii. BioTechnologia 99:185–196. https://doi.org/10.5114/bta.2018.77479

Article  CAS  Google Scholar 

Gandotra V, Gupta R, Bhardwaj K (1998) Abundance of Azotobacter in great soil groups of North-West Himalayas. J Ind Soc Soil Sci 46:379–383

Google Scholar 

Hamza TA, Alebejo AL (2017) Isolation and characterization of rhizobia from rhizospher and root nodule of cowpea, elephant and lab plants. Int J Novel Res Interdiscip Stud 4:1–7

Google Scholar 

Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Env Microbiol 16:2997–3011. https://doi.org/10.1111/1462-2920.12389

Article  CAS  Google Scholar 

Herter S, Schmidt M, Thompson ML, Mikolasch A, Schauer F (2011) A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum. Appl Microbiol Biotechnol 90:1037–1049. https://doi.org/10.1007/s00253-011-3093-x

Article  PubMed  CAS  Google Scholar 

Humphries RM, Abbott AN, Hindler JA (2019) Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. J Clin Microbiol 57:e00203–00219. https://doi.org/10.1128/JCM.00203-19

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jain D, Sharma J, Kaur G, Bhojiya AA, Chauhan S, Sharma V, Suman A, Mohanty SR, Maharjan E (2021) Phenetic and Molecular Diversity of Nitrogen Fixating Plant Growth Promoting Azotobacter Isolated from Semiarid Regions of India. BioMed Res Int 2021. https://doi.org/10.1155/2021/6686283

Jensen HL (1954) The Azotobacteriaceae. Bacteriol Rev 18:195–214. https://doi.org/10.1128/br.18.4.195-214.1954

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jin H, Wang H, Zhang Y, Hu T, Lin Z, Liu B, Ma J, Wang X, Liu Q, Lin X, Xie Z (2020) Description of Azotobacter chroococcum subsp. isscasi subsp. nov. isolated from paddy soil and establishment of Azotobacter chroococcum subsp. chroococcum subsp. nov. Int J Syst Evol Microbiol 70:2124–2131. https://doi.org/10.1099/ijsem.0.004026

Article  PubMed  CAS  Google Scholar 

Jordan EO, Caldwell ME, Reiter D (1934) Bacterial motility. J Bacteriol 27:165–174. https://doi.org/10.1128/jb.27.2.165-174.1934

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khosravi H, Dolatabad HK (2020) Identification and molecular characterization of Azotobacter chroococcum and Azotobacter salinestris using ARDRA, REP, ERIC, and BOX. Molec Biol Rep 47:307–316. https://doi.org/10.1007/s11033-019-05133-7

Lenart-Boroń A, Boroń P (2014) The effect of industrial heavy metal pollution on microbial abundance and diversity in soils—a review. Environ risk Assess soil Contam. https://doi.org/10.5772/57406

Article  Google Scholar 

Mahmoud S, El-Sawy M, Ishac Y, El-Safty M (1978) The Effects of Salinity and Alkalinity on the Distribution and Capacity of N₂-Fixation by Azotobacter in Egyptian Soils. Ecol Bull 26:99–109. https://www.jstor.org/stable/20112668

Google Scholar 

Martyniuk S, Martyniuk M (2003) Occurrence of Azotobacter spp. in some Polish soils. Pol J Env Stud 12:371–374

CAS  Google Scholar 

Mazinani Z, Asgharzadeh A (2014) Genetic diversity of Azotobacter strains isolated from soils by amplified ribosomal DNA restriction analysis. Cytol Genet 48:293–301. https://doi.org/10.3103/S0095452714050041

Article  Google Scholar 

Mejı́a-Ruı́z H, Guzmán J, Moreno S, Soberón-Chávez G, Espı́n G (1997) The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene 199:271–277. https://doi.org/10.1016/s0378-1119(97)00380-6

Article  PubMed  Google Scholar 

Moreno J, Gonzalez-Lopez J, Vela GR (1986) Survival of Azotobacter spp. in dry soils. Appl Env Microbiol 51:123–125. https://doi.org/10.1128/aem.51.1.123-125.1986

Article  CAS  Google Scholar 

Negev M, Garb Y, Biller R, Sagy G (2010) Environmental Problems, Causes, and Solutions: An Open Question. J Env Edu 41:101–115. https://doi.org/10.1080/00958960903295258

Article  Google Scholar 

Page WJ, Shivprasad S (1991) Azotobacter salinestris sp. nov., a sodium-dependent, microaerophilic, and aeroadaptive nitrogen-fixing bacterium. Int J Sys Evol Microbiol 41:369–376. https://doi.org/10.1099/00207713-41-3-369

Article  Google Scholar 

Ramos PE, Silva P, Alario MM, Pastrana LM, Teixeira JA, Cerqueira MA, Vicente AA (2018) Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids 77:8–16. https://doi.org/10.1016/j.foodhyd.2017.08.031

Article  CAS  Google Scholar 

Rashad YM, Hafez M, Rashad M (2023) Diazotrophic Azotobacter salinestris YRNF3: a probable calcite-solubilizing bio-agent for improving the calcareous soil properties. Sci Rep 13:20621. https://doi.org/10.1038/s41598-023-47924-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Revin VV, Kostina EG, Revina NV, Shutova VV (2018) Effect of nutrient sources on the alginate accumulation in the culture liquid of Azotobacter vinelandii D-05 and obtaining biocomposite materials. Braz Arch Biol Technol 61. https://doi.org/10.1590/1678-4324-2018160406

Rubio EJ, Montecchia MS, Tosi M, Cassán FD, Perticari A, Correa OS (2013) Genotypic characterization of Azotobacteria isolated from Argentinean soils and plant-growth-promoting traits of selected strains with prospects for biofertilizer production. Sci World J 2013 Article ID 519603. https://doi.org/10.1155/2013/519603

Sabra W, Zeng A-P, Deckwer W-D (2001) Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol 56:315–325.

留言 (0)

沒有登入
gif