Absinta M, Lassmann H, Trapp BD (2020) Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol 33(3):277–285. https://doi.org/10.1097/wco.0000000000000818
Article CAS PubMed PubMed Central Google Scholar
Fleischer V, Gröger A, Koirala N, Droby A, Muthuraman M, Kolber P, Reuter E, Meuth SG, Zipp F, Groppa S (2016) Increased structural white and grey matter network connectivity compensates for functional decline in early multiple sclerosis. Mult Scler 23(3):432–441. https://doi.org/10.1177/1352458516651503
Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM (2005) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129(Pt 2):527–537. https://doi.org/10.1093/brain/awh670
Zhuang Y, Zhou F, Gong H (2015) Intrinsic functional plasticity of the sensorimotor network in relapsing-remitting multiple sclerosis: evidence from a centrality analysis. PLoS ONE 10(6):e0130524. https://doi.org/10.1371/journal.pone.0130524
Article CAS PubMed PubMed Central Google Scholar
Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner I-K, Rovira A, Sumowski JF, Valsasina P, Filippi M (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14(3):302–317. https://doi.org/10.1016/s1474-4422(14)70250-9
Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, Rocca MA (2022) Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol Neuroimmunol Neuroinflamm 9(2):e1139. https://doi.org/10.1212/NXI.0000000000001139
Article PubMed PubMed Central Google Scholar
Shu N, Liu Y, Li K, Duan Y, Wang J, Yu C, Dong H, Ye J, He Y (2011) Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex 21(11):2565–2577. https://doi.org/10.1093/cercor/bhr039
Roosendaal SD, Geurts JJ, Vrenken H, Hulst HE, Cover KS, Castelijns JA, Pouwels PJ, Barkhof F (2009) Regional DTI differences in multiple sclerosis patients. Neuroimage 44(4):1397–1403. https://doi.org/10.1016/j.neuroimage.2008.10.026
Article CAS PubMed Google Scholar
Chen X, Roberts N, Zheng Q, Peng Y, Han Y, Luo Q, Zeng C, Wang J, Luo T, Li Y (2021) Progressive brain microstructural damage in patients with multiple sclerosis but not in patients with neuromyelitis optica spectrum disorder: a cross-sectional and follow-up tract-based spatial statistics study. Mult Scler Relat Disord 55:103178. https://doi.org/10.1016/j.msard.2021.103178
Article CAS PubMed Google Scholar
Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16(3):147–158. https://doi.org/10.1038/nrn3900
Article CAS PubMed Google Scholar
Tomassini V, Matthews PM, Thompson AJ, Fuglo D, Geurts JJ, Johansen-Berg H, Jones DK, Rocca MA, Wise RG, Barkhof F, Palace J (2012) Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol 8(11):635–646. https://doi.org/10.1038/nrneurol.2012.179
Article PubMed PubMed Central Google Scholar
Gamboa OL, Tagliazucchi E, von Wegner F, Jurcoane A, Wahl M, Laufs H, Ziemann U (2014) Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. Neuroimage 94:385–395. https://doi.org/10.1016/j.neuroimage.2013.12.008
Article CAS PubMed Google Scholar
Tahedl M, Levine SM, Greenlee MW, Weissert R, Schwarzbach JV (2018) Functional connectivity in multiple sclerosis: recent findings and future directions. Front Neurol 9:828. https://doi.org/10.3389/fneur.2018.00828
Article PubMed PubMed Central Google Scholar
Liu Y, Wang H, Duan Y, Huang J, Ren Z, Ye J, Dong H, Shi F, Li K, Wang J (2017) Functional brain network alterations in clinically isolated syndrome and multiple sclerosis: a graph-based connectome study. Radiology 282:534–541. https://doi.org/10.1148/radiol.2016152843
Fuchs TA, Schoonheim MM, Broeders TAA, Hulst HE, Weinstock-Guttman B, Jakimovski D, Silver J, Zivadinov R, Geurts JJG, Dwyer MG, Benedict RHB (2021) Functional network dynamics and decreased conscientiousness in multiple sclerosis. J Neurol 269:2696–2706. https://doi.org/10.1007/s00415-021-10860-8
Schoonheim MM, Douw L, Broeders TA, Eijlers AJ, Meijer KA, Geurts JJ (2021) The cerebellum and its network: disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis. Mult Scler 27(13):2031–2039. https://doi.org/10.1177/1352458521999274
Article CAS PubMed PubMed Central Google Scholar
Zhou F, Zhuang Y, Gong H, Zhan J, Grossman M, Wang Z (2016) Resting state brain entropy alterations in relapsing remitting multiple sclerosis. PLoS ONE 11:e0146080. https://doi.org/10.1371/journal.pone.0146080
Article CAS PubMed PubMed Central Google Scholar
Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M (2022) Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 35:103076. https://doi.org/10.1016/j.nicl.2022.103076
Article PubMed PubMed Central Google Scholar
Wagner B, Härig CL, Walter B, Sommer J, Sammer G, Berghoff M (2022) Is there reduced hemodynamic brain activation in multiple sclerosis even with undisturbed cognition? Int J Mol Sci 24(1):112. https://doi.org/10.3390/ijms24010112
Article PubMed PubMed Central Google Scholar
Wang DJJ, Jann K, Fan C, Qiao Y, Zang Y-F, Lu H, Yang Y (2018) Neurophysiological basis of multi-scale entropy of brain complexity and its relationship with functional connectivity. Front Neurosci 12:352. https://doi.org/10.3389/fnins.2018.00352
Article PubMed PubMed Central Google Scholar
Keshmiri S (2020) Entropy and the brain: an overview. Entropy (Basel) 22(9):E917. https://doi.org/10.3390/e22090917
Wang Z (2021) The neurocognitive correlates of brain entropy estimated by resting state fMRI. Neuroimage 232:117893. https://doi.org/10.1016/j.neuroimage.2021.117893
Smith RX, Yan L, Wang DJ (2014) Multiple time scale complexity analysis of resting state FMRI. Brain Imaging Behav 8(2):284–291. https://doi.org/10.1007/s11682-013-9276-6
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS et al (2018) Diagnosis of multiple sclerosis—2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/s1474-4422(17)30470-2
Zheng F, Li Y, Zhuo Z, Duan Y, Cao G, Tian D, Zhang X, Li K, Zhou F, Huang M et al (2022) Structural and functional hippocampal alterations in multiple sclerosis and neuromyelitis optica spectrum disorder. Mul Scler 28:707–717. https://doi.org/10.1177/13524585211032800
Gaser C, Dahnke R, Thompson P, Kurth F, Luders E, Alzheimer’s Disease Neuroimaging Initiative (2022) CAT—a computational anatomy toolbox for the analysis of structural MRI data. bioRxiv. https://doi.org/10.1101/2022.06.11.495736
Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044
Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355. https://doi.org/10.1002/mrm.1910350312
留言 (0)