Complexity of intrinsic brain activity in relapsing–remitting multiple sclerosis patients: patterns, association with structural damage, and clinical disability

Absinta M, Lassmann H, Trapp BD (2020) Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol 33(3):277–285. https://doi.org/10.1097/wco.0000000000000818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleischer V, Gröger A, Koirala N, Droby A, Muthuraman M, Kolber P, Reuter E, Meuth SG, Zipp F, Groppa S (2016) Increased structural white and grey matter network connectivity compensates for functional decline in early multiple sclerosis. Mult Scler 23(3):432–441. https://doi.org/10.1177/1352458516651503

Article  PubMed  Google Scholar 

Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM (2005) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129(Pt 2):527–537. https://doi.org/10.1093/brain/awh670

Article  PubMed  Google Scholar 

Zhuang Y, Zhou F, Gong H (2015) Intrinsic functional plasticity of the sensorimotor network in relapsing-remitting multiple sclerosis: evidence from a centrality analysis. PLoS ONE 10(6):e0130524. https://doi.org/10.1371/journal.pone.0130524

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner I-K, Rovira A, Sumowski JF, Valsasina P, Filippi M (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14(3):302–317. https://doi.org/10.1016/s1474-4422(14)70250-9

Article  PubMed  Google Scholar 

Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, Rocca MA (2022) Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol Neuroimmunol Neuroinflamm 9(2):e1139. https://doi.org/10.1212/NXI.0000000000001139

Article  PubMed  PubMed Central  Google Scholar 

Shu N, Liu Y, Li K, Duan Y, Wang J, Yu C, Dong H, Ye J, He Y (2011) Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex 21(11):2565–2577. https://doi.org/10.1093/cercor/bhr039

Article  PubMed  Google Scholar 

Roosendaal SD, Geurts JJ, Vrenken H, Hulst HE, Cover KS, Castelijns JA, Pouwels PJ, Barkhof F (2009) Regional DTI differences in multiple sclerosis patients. Neuroimage 44(4):1397–1403. https://doi.org/10.1016/j.neuroimage.2008.10.026

Article  CAS  PubMed  Google Scholar 

Chen X, Roberts N, Zheng Q, Peng Y, Han Y, Luo Q, Zeng C, Wang J, Luo T, Li Y (2021) Progressive brain microstructural damage in patients with multiple sclerosis but not in patients with neuromyelitis optica spectrum disorder: a cross-sectional and follow-up tract-based spatial statistics study. Mult Scler Relat Disord 55:103178. https://doi.org/10.1016/j.msard.2021.103178

Article  CAS  PubMed  Google Scholar 

Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16(3):147–158. https://doi.org/10.1038/nrn3900

Article  CAS  PubMed  Google Scholar 

Tomassini V, Matthews PM, Thompson AJ, Fuglo D, Geurts JJ, Johansen-Berg H, Jones DK, Rocca MA, Wise RG, Barkhof F, Palace J (2012) Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol 8(11):635–646. https://doi.org/10.1038/nrneurol.2012.179

Article  PubMed  PubMed Central  Google Scholar 

Gamboa OL, Tagliazucchi E, von Wegner F, Jurcoane A, Wahl M, Laufs H, Ziemann U (2014) Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. Neuroimage 94:385–395. https://doi.org/10.1016/j.neuroimage.2013.12.008

Article  CAS  PubMed  Google Scholar 

Tahedl M, Levine SM, Greenlee MW, Weissert R, Schwarzbach JV (2018) Functional connectivity in multiple sclerosis: recent findings and future directions. Front Neurol 9:828. https://doi.org/10.3389/fneur.2018.00828

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Wang H, Duan Y, Huang J, Ren Z, Ye J, Dong H, Shi F, Li K, Wang J (2017) Functional brain network alterations in clinically isolated syndrome and multiple sclerosis: a graph-based connectome study. Radiology 282:534–541. https://doi.org/10.1148/radiol.2016152843

Article  PubMed  Google Scholar 

Fuchs TA, Schoonheim MM, Broeders TAA, Hulst HE, Weinstock-Guttman B, Jakimovski D, Silver J, Zivadinov R, Geurts JJG, Dwyer MG, Benedict RHB (2021) Functional network dynamics and decreased conscientiousness in multiple sclerosis. J Neurol 269:2696–2706. https://doi.org/10.1007/s00415-021-10860-8

Article  PubMed  Google Scholar 

Schoonheim MM, Douw L, Broeders TA, Eijlers AJ, Meijer KA, Geurts JJ (2021) The cerebellum and its network: disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis. Mult Scler 27(13):2031–2039. https://doi.org/10.1177/1352458521999274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou F, Zhuang Y, Gong H, Zhan J, Grossman M, Wang Z (2016) Resting state brain entropy alterations in relapsing remitting multiple sclerosis. PLoS ONE 11:e0146080. https://doi.org/10.1371/journal.pone.0146080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M (2022) Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 35:103076. https://doi.org/10.1016/j.nicl.2022.103076

Article  PubMed  PubMed Central  Google Scholar 

Wagner B, Härig CL, Walter B, Sommer J, Sammer G, Berghoff M (2022) Is there reduced hemodynamic brain activation in multiple sclerosis even with undisturbed cognition? Int J Mol Sci 24(1):112. https://doi.org/10.3390/ijms24010112

Article  PubMed  PubMed Central  Google Scholar 

Wang DJJ, Jann K, Fan C, Qiao Y, Zang Y-F, Lu H, Yang Y (2018) Neurophysiological basis of multi-scale entropy of brain complexity and its relationship with functional connectivity. Front Neurosci 12:352. https://doi.org/10.3389/fnins.2018.00352

Article  PubMed  PubMed Central  Google Scholar 

Keshmiri S (2020) Entropy and the brain: an overview. Entropy (Basel) 22(9):E917. https://doi.org/10.3390/e22090917

Article  Google Scholar 

Wang Z (2021) The neurocognitive correlates of brain entropy estimated by resting state fMRI. Neuroimage 232:117893. https://doi.org/10.1016/j.neuroimage.2021.117893

Article  PubMed  Google Scholar 

Smith RX, Yan L, Wang DJ (2014) Multiple time scale complexity analysis of resting state FMRI. Brain Imaging Behav 8(2):284–291. https://doi.org/10.1007/s11682-013-9276-6

Article  PubMed  Google Scholar 

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS et al (2018) Diagnosis of multiple sclerosis—2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/s1474-4422(17)30470-2

Article  PubMed  Google Scholar 

Zheng F, Li Y, Zhuo Z, Duan Y, Cao G, Tian D, Zhang X, Li K, Zhou F, Huang M et al (2022) Structural and functional hippocampal alterations in multiple sclerosis and neuromyelitis optica spectrum disorder. Mul Scler 28:707–717. https://doi.org/10.1177/13524585211032800

Article  CAS  Google Scholar 

Gaser C, Dahnke R, Thompson P, Kurth F, Luders E, Alzheimer’s Disease Neuroimaging Initiative (2022) CAT—a computational anatomy toolbox for the analysis of structural MRI data. bioRxiv. https://doi.org/10.1101/2022.06.11.495736

Article  Google Scholar 

Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044

Article  PubMed  Google Scholar 

Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355. https://doi.org/10.1002/mrm.1910350312

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif