Investigating the role of GPR39 in treatment of stress-induced depression and anxiety

Ali S, Stone MA, Peters JL et al (2006) The prevalence of co-morbid depression in adults with type 2 diabetes: a systematic review and meta-analysis. Diabet Med 23:1165–1173. https://doi.org/10.1111/j.1464-5491.2006.01943.x

Article  CAS  PubMed  Google Scholar 

Anacker C, Luna VM, Stevens G et al (2018) Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 559:98–102. https://doi.org/10.1038/s41586-018-0262-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anbari-Nogyni Z, Bidaki R, Madadizadeh F et al (2020) Relationship of zinc status with depression and anxiety among elderly population. Clin Nutr ESPEN 37:233–239. https://doi.org/10.1016/j.clnesp.2020.02.008

Article  PubMed  Google Scholar 

Bohlen M, Hayes ER, Bohlen B et al (2014) Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol. Behav Brain Res 272:46–54. https://doi.org/10.1016/j.bbr.2014.06.017.Experimenter

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourin M, Redrobe JP, Hascoet M et al (1996) A schematic representation of the psychopharmacological profile of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 20:1389–1402. https://doi.org/10.1016/S0278-5846(96)00134-0

Article  CAS  Google Scholar 

Cheeta S, Kenny PJ, File SE (2000) Hippocampal and septal injections of nicotine and 8-OH-DPAT distinguish among different animal tests of anxiety. Prog Neuro-Psychopharmacol Biol Psychiatry 24:1053–1067. https://doi.org/10.1016/S0278-5846(00)00129-9

Article  CAS  Google Scholar 

Chmielarz P, Kreiner G, Kuśmierczyk J et al (2016) Depressive-like immobility behavior and genotype × stress interactions in male mice of selected strains. Stress 19:206–213. https://doi.org/10.3109/10253890.2016.1150995

Article  CAS  PubMed  Google Scholar 

Chorin E, Vinograd O, Fleidervish I et al (2011) Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci 31:12916–12926. https://doi.org/10.1523/JNEUROSCI.2205-11.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cieślik K, Sowa-Kućma M, Ossowska G et al (2011) Chronic unpredictable stress-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) gene expression is antagonized by zinc treatment. Pharmacol Rep 63:537–543. https://doi.org/10.1016/s1734-1140(11)70520-5

Article  PubMed  Google Scholar 

Delcourte S, Etievant A, Haddjeri N (2021) Role of central serotonin and noradrenaline interactions in the antidepressants’ action: electrophysiological and neurochemical evidence, 1st edn. Elsevier B.V. https://doi.org/10.1016/bs.pbr.2021.01.002

Ding Q, Li H, Tian X et al (2016) Zinc and imipramine reverse the depression-like behavior in mice induced by chronic restraint stress. J Affect Disord 197:100–106. https://doi.org/10.1016/j.jad.2016.03.017

Article  CAS  PubMed  Google Scholar 

Doboszewska U, Maret W, Wlaź P (2024) GPR39: An orphan receptor begging for ligands. Drug Discov Today 29(2):103861. https://doi.org/10.1016/j.drudis.2023.103861

Article  CAS  PubMed  Google Scholar 

Doboszewska U, Wlaź P, Nowak G et al (2017) Zinc in the monoaminergic theory of depression: its relationship to neural plasticity. Neural Plast 2017. https://doi.org/10.1155/2017/3682752

Doboszewska U, Sawicki J, Sajnóg A et al (2022) Alterations of Serum Magnesium Concentration in Animal Models of Seizures and Epilepsy—The Effects of Treatment with a GPR39 Agonist and Knockout of the Gpr39 Gene. Cells 11. https://doi.org/10.3390/cells11131987

Doboszewska U, Socała K, Pieróg M et al (2023) TC-G 1008 facilitates epileptogenesis by acting selectively at the GPR39 receptor but non-selectively activates CREB in the hippocampus of pentylenetetrazole-kindled mice. Cell Mol Life Sci 80:1–27. https://doi.org/10.1007/s00018-023-04766-z

Article  CAS  Google Scholar 

Dou X, Tian X, Zheng Y et al (2014) Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav Brain Res 273:133–138. https://doi.org/10.1016/j.bbr.2014.07.040

Article  CAS  PubMed  Google Scholar 

Filipović D, Gavrilović L, Dronjak S, Radojčić MB (2007) The effect of repeated physical exercise on hippocampus and brain cortex in stressed rats. Ann N Y Acad Sci 1096:207–219. https://doi.org/10.1196/annals.1397.087

Article  CAS  PubMed  Google Scholar 

Georgiou P, Zanos P, Mou TCM et al (2022) Experimenters’ sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci 25:1191–1200. https://doi.org/10.1038/s41593-022-01146-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilad D, Shorer S, Ketzef M et al (2015) Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis 81:4–13. https://doi.org/10.1016/j.nbd.2014.12.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herselman MF, Bobrovskaya L (2023) The effects of chronic unpredictable mild stress and semi-pure diets on the brain, gut and adrenal medulla in C57BL6 mice. Int J Mol Sci 24(19):14618

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holst B, Egerod KL, Jin C et al (2009) G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150:2577–2585. https://doi.org/10.1210/en.2008-1250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itoh T, Saito T, Fujimura M et al (1993) Restraint stress-induced changes in endogenous zinc release from the rat hippocampus. Brain Res 618:318–322. https://doi.org/10.1016/0006-8993(93)91283-X

Article  CAS  PubMed  Google Scholar 

Jackson VR, Nothacker H-PP, Civelli O (2006) GPR39 receptor expression in the mouse brain. NeuroReport 17:813–816. https://doi.org/10.1097/01.wnr.0000215779.76602.93

Article  CAS  PubMed  Google Scholar 

Joshi M, Akhtar M, Najmi AK et al (2012) Effect of zinc in animal models of anxiety, depression and psychosis. Hum Exp Toxicol 31:1237–1243. https://doi.org/10.1177/0960327112444938

Article  CAS  PubMed  Google Scholar 

Jung YH, Hong SI, Ma SX et al (2014) Strain differences in the chronic mild stress animal model of depression and anxiety in mice. Biomol Ther 22:453–459. https://doi.org/10.4062/biomolther.2014.058

Article  Google Scholar 

Kinsey SG, Bailey MT, Sheridan JF et al (2007) Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice. Brain Behav Immun 21:458–466

Article  PubMed  Google Scholar 

Lages YVM, Rossi AD, Krahe TE, Landeira-Fernandez J (2021) Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis. Neurosci Biobehav Rev 124:78–88. https://doi.org/10.1016/j.neubiorev.2021.01.020

Article  CAS  PubMed  Google Scholar 

Lai J, Moxey A, Nowak G et al (2012) The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord 136:e31–e39. https://doi.org/10.1016/j.jad.2011.06.022

Article  CAS  PubMed  Google Scholar 

Laitakari A, Liu L, Frimurer TM, Holst B (2021) The zinc-sensing receptor gpr39 in physiology and as a pharmacological target. Int J Mol Sci 22. https://doi.org/10.3390/ijms22083872

Li H, Wang P, Zhou Y et al (2022) Correlation between intestinal microbiotal imbalance and 5-HT metabolism, immune inflammation in chronic unpredictable mild stress male rats. Genes Brain Behav 21:1–11. https://doi.org/10.1111/gbb.12806

Article  CAS  Google Scholar 

Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 155:315–322. https://doi.org/10.1007/s002130100694

Article  CAS  PubMed  Google Scholar 

Luppino FS, de Wit LM, Bouvy PF et al (2010) Overweight, obesity, and depression a systematic review and meta-analysis of longitudinal studies Floriana. Arch Gen Psychiatry 67:220–229

留言 (0)

沒有登入
gif