A Riemannian multimodal representation to classify parkinsonism-related patterns from noninvasive observations of gait and eye movements

Feigin V, Nichols E, Alam T, Bannick M, Beghi E, Blake N, Culpepper W, Dorsey E, Elbaz A, Ellenbogen R & Others Global, regional, and national burden of neurological disorders. 1990-2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology. 2019;18:459-480.

Perlmutter J. Assessment of Parkinson disease manifestations. Curr Protoc Neurosci. 2009;49:10–1.

Article  MATH  Google Scholar 

Hendricks R, Khasawneh M. An investigation into the use and meaning of Parkinson’s disease clinical scale scores. Parkinson’s Disease. 2021;2021.

Ekker M, Janssen S, Seppi K, Poewe W, De Vries N, Theelen T, Nonnekes J, Bloem B. Ocular and visual disorders in Parkinson’s disease: common but frequently overlooked. Parkinsonism Relat Disord. 2017;40:1–10.

Article  Google Scholar 

Belić M, Bobić V, Badža M, Šolaja N, Jovičić M, Kostić V. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease-a review. Clinical Neurol Neurosurg. 2019;184: 105442.

Article  Google Scholar 

Hu W, Zhan H, Tian Y, Xiong Y, Lu Y. Enhanced video clustering using multiple Riemannian manifold-valued descriptors and audio-visual information. Expert Syst Appl. 2024;246: 123099.

Article  Google Scholar 

Jiang Y, Chang X, Liu Y, Ding L, Kong L, Jiang B. Gaussian differential privacy on Riemannian manifolds. Adv Neural Inf Process Syst. 2023;36:14665–84.

MATH  Google Scholar 

Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M. Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2013. p. 73-80.

Huang Z, Wang R, Shan S, Li X, Chen X. Log-euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: International conference on machine learning. 2015. p. 720-729.

Bronstein M, Bruna J, LeCun Y, Szlam A, Vandergheynst P. Geometric deep learning: going beyond Euclidean data. IEEE Signal Process Mag. 2017;34:18–42.

Article  Google Scholar 

Deb R, Bhat G, An S, Shill H, Ogras U. Trends in technology usage for Parkinson’s disease assessment: a systematic review. MedRxiv; 2021. pp. 2021-02.

Silva A, Oliveira R, Diógenes D, Castro Aguiar M, Sallem C, Lima M, Albuquerque Filho L, Medeiros S, Mendonça L, Santiago Filho P & Others Premotor, Nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art. Ageing Research Reviews. 2022;101834.

Rastegari E, Azizian S, Ali H. Machine learning and similarity network approaches to support automatic classification of Parkinson’s diseases using accelerometer-based gait analysis. In: Proceedings of the 52nd hawaii international conference on system sciences; 2019.

Biase L, Raiano L, Caminiti M, Pecoraro P, Di Lazzaro V. Parkinson’s disease wearable gait analysis: kinematic and dynamic markers for diagnosis. Sensors. 2022;22:8773.

Article  Google Scholar 

Wang Q, Zeng W, Dai X. Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods. Cognitive Neurodynamics. 2022;18(1):109–32.

Article  MATH  Google Scholar 

Trabassi D, Serrao M, Varrecchia T, Ranavolo A, Coppola G, De Icco R, Tassorelli C, Castiglia S. Machine learning approach to support the detection of Parkinson’s disease in IMU-based Gait analysis. Sensors. 2022;22:3700.

Article  Google Scholar 

Kaur R, Motl R, Sowers R, Hernandez M. A vision-based framework for predicting multiple sclerosis and Parkinson’s disease gait dysfunctions-a deep learning approach. In: IEEE journal of biomedical and health informatics. 2022.

Liu P, Yu N, Yang Y, Yu Y, Sun X, Yu H, Han J, Wu J. Quantitative assessment of gait characteristics in patients with Parkinson’s disease using 2D video. Parkinsonism Relat Disord. 2022;101:49–56.

Article  MATH  Google Scholar 

Cheriet M, Dentamaro V, Hamdan M, Impedovo D, Pirlo G. Multi-speed transformer network for neurodegenerative disease assessment and activity recognition. Comput Methods Prog Biomed. 2023;230: 107344.

Article  MATH  Google Scholar 

Guayacán LC, et al. Visualising and quantifying relevant parkinsonian gait patterns using 3D convolutional network. J Biomed Inform. 2021;123: 103935.

Article  Google Scholar 

Gitchel G, Wetzel P, Qutubuddin A, Baron M. Experimental support that ocular tremor in Parkinson’s disease does not originate from head movement. Parkinsonism Relat Disord. 2014;20:743–7.

Article  Google Scholar 

Tsitsi P, Benfatto M, Seimyr G, Larsson O, Svenningsson P, Markaki I. Fixation duration and pupil size as diagnostic tools in Parkinson’s disease. J Parkinsons Dis. 2021;11:865–75.

Article  Google Scholar 

Frei K. Abnormalities of smooth pursuit in Parkinson’s disease: a systematic review. Clinical Parkinsonism Relat Disord. 2021;4: 100085.

Article  MATH  Google Scholar 

Armstrong R. Oculo-visual dysfunction in Parkinson’s disease. J Parkinsons Dis. 2015;5:715–26.

Article  MATH  Google Scholar 

Larrazabal A, García Cena C, Martínez C. Video-oculography eye tracking towards clinical applications a review. Comput Biology Med. 2019;108:57–66.

Article  MATH  Google Scholar 

Fooken J, Patel P, Jones C, McKeown M, Spering M. Preservation of eye movements in Parkinson’s disease is stimulus-and task-specific. J Neurosci. 2022;42:487–99.

Article  Google Scholar 

Rascol O, Clanet M, Montastruc J, Simonetta M, Soulier-Esteve M, Doyon B, Rascol A. Abnormal ocular movements in Parkinson’s disease: evidence for involvement of dopaminergic systems. Brain. 1989;112:1193–214.

Article  Google Scholar 

Vidailhet M, Rivaud S, Gouider-Khouja N, Pillon B, Bonnet A, Gaymard B, Agid Y, Pierrot-Deseilligny C. Eye movements in Parkinsonian syndromes. Annal Neurol: Off J Am Neurol Assoc Child Neurol Soc. 1994;35:420–6.

Article  Google Scholar 

Bredemeyer O, Patel S, FitzGerald J, Antoniades C. Oculomotor deficits in Parkinson’s disease: increasing sensitivity using multivariate approaches. Front Digital Health. 2022;4: 939677.

Article  Google Scholar 

Carson T, Sutton S. Application for smart phone or related devices for use in assessment of vestibulo-ocular reflex function. (Google Patents,2018), US Patent App. 15/569,472.

Pham H, Do T, Jie Chan K, Sen G, Han A, Lim P, Loon Cheng T, Nguyen Q, Nguyen B, Chua HM. Multimodal detection of Parkinson disease based on vocal and improved spiral test. In: 2019 International conference on system science and engineering (ICSSE); 2019. p. 279-284.

Vásquez-Correa J, Bocklet T, Orozco-Arroyave J, Nöth E. Comparison of user models based on GMM-UBM and i-vectors for speech, handwriting, and gait assessment of Parkinson’s disease patients. ICASSP 2020-2020 IEEE International Conference On Acoustics, Speech And Signal Processing (ICASSP); 2020. pp. 6544-6548.

Vásquez-Correa J, Arias-Vergara T, Orozco-Arroyave J, Eskofier B, Klucken J, Nöth E. Multimodal assessment of Parkinson’s disease: a deep learning approach. IEEE J Biomed Health Inform. 2018;23:1618–30.

Article  Google Scholar 

Skibinska J, Hosek J. Computerised analysis of hypomimia and hypokinetic dysarthria for improved diagnosis of Parkinson’s disease. Available At SSRN 4327668.

Archila J, Manzanera A, Martinez F. A multimodal Parkinson quantification by fusing eye and gait motion patterns, using covariance descriptors, from non-invasive computer vision. In: Computer methods and programs in biomedicine; 2021. p. 106607.

Fletcher P, Joshi S. Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 2007;87:250–62.

Article  MATH  Google Scholar 

Brooks D, Schwander O, Barbaresco F, Schneider J, Cord M. Riemannian batch normalization for SPD neural networks. In: Advances in neural information processing systems. 2019. p. 32.

Cicirelli G, Impedovo D, Dentamaro V, Marani R, Pirlo G, D’Orazio T. Human gait analysis in neurodegenerative diseases: a review. IEEE J Biomed Health Inform. 2021;26:229–42.

Article  MATH  Google Scholar 

Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17(5):427–42. https://doi.org/10.1212/wnl.17.5.427.

Article  MATH  Google Scholar 

Goetz CG, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord: Off J Mov Disord Soc. 2008;23(15):2129–70.

Article  MATH  Google Scholar 

Martínez-Martín P, et al. The clinical impression of severity index for Parkinson’s disease: international validation study. Mov Disord: Off J Mov Disord Soc. 2009;24(2):211–7.

Article  MATH  Google Scholar 

Li T, et al. Automatic timed up-and-go sub-task segmentation for Parkinson’s disease patients using video-based activity classification. IEEE Trans Neural Syst Rehabil Eng. 2018;26(11):2189–99.

Article  MATH  Google Scholar 

Ban R, Ahn J, Simpkins C, Lazarus J, Yang F. Dynamic gait stability in people with mild to moderate Parkinson’s disease. Clinical Biomech. 2024;118: 106316.

Article  Google Scholar 

Russo M, Amboni M, Volzone A, Cuoco S, Camicioli R, Di Filippo F, Barone P, Romano M, Amato F, Ricciardi C. Kinematic and kinetic gait features associated with mild cognitive impairment in Parkinson’s disease. In: IEEE transactions on neural systems and rehabilitation engineering. 2024.

Kersbergen J, Otte K, Vries N, Bloem B, Röhling H, Mansow-Model S, Kolk N, Overeem S, Zinger S, Gilst M. Camera-based objective measures of Parkinson’s disease gait features. BMC Res Notes. 2021;14:1–6.

Google Scholar 

Farashi S. Analysis of vertical eye movements in Parkinson’s disease and its potential for diagnosis. Appl Intell. 2021;51(11):8260–70.

Article  MATH  Google Scholar 

Zhang J, Zhang B, Ren Q, Zhong Q, Li Y, Liu G, Ma X, Zhao C. Eye movement especially vertical oculomotor impairment as an aid to assess Parkinson’s disease. Neurol Sci. 2021;42:2337–45.

Article  MATH  Google Scholar 

Salazar I, Pertuz S, Contreras W, Martıínez F. A convolutional oculomotor representation to model parkinsonian fixational patterns from magnified videos. Pattern Anal Appl. 2021;24:445–57.

Article  Google Scholar 

Rubiano-Cruz R. Detection of Parkinson’s disease with multimodal deep-learning. 2024.

Li H, Ma W, Li C, He Q, Zhou Y, Xie A. Combined diagnosis for Parkinson’s disease via gait and eye movement disorders. Parkinsonism Relat Disord. 2024;123: 106979.

Article  MATH  Google Scholar 

留言 (0)

沒有登入
gif