Adler, I. D. Comparison of the duration of spermatogenesis between male rodents and humans. Mutat. Res. 352, 169–172 (1996).
Heller, C. H. & Clermont, Y. Kinetics of the germinal epithelium in man. Recent. Prog. Horm. Res. 20, 545–575 (1964).
Johnson, L. & Varner, D. D. Effect of daily spermatozoan production but not age on transit time of spermatozoa through the human epididymis. Biol. Reprod. 39, 812–817 (1988).
Article CAS PubMed Google Scholar
Meistrich, M. L., Hughes, T. H. & Bruce, W. R. Alteration of epididymal sperm transport and maturation in mice by oestrogen and testosterone. Nature 258, 145–147 (1975).
Article CAS PubMed Google Scholar
Puga Molina, L. C. et al. Molecular basis of human sperm capacitation. Front. Cell Dev. Biol. 6, 72 (2018).
Article PubMed PubMed Central Google Scholar
Lord, T. & Nixon, B. Metabolic changes accompanying spermatogonial stem cell differentiation. Dev. Cell 54, 399–411 (2020).
Reyes, J. G. et al. The hypoxic testicle: physiology and pathophysiology. Oxid. Med. Cell Longev. 2012, 929285 (2012).
Article PubMed PubMed Central Google Scholar
Gorelick, J. I. & Goldstein, M. Loss of fertility in men with varicocele. Fertil. Steril. 59, 613–616 (1993).
Article CAS PubMed Google Scholar
Jarow, J. P., Coburn, M. & Sigman, M. Incidence of varicoceles in men with primary and secondary infertility. Urology 47, 73–76 (1996).
Article CAS PubMed Google Scholar
Damsgaard, J. et al. Varicocele is associated with impaired semen quality and reproductive hormone levels: a study of 7035 healthy young men from six European countries. Eur. Urol. 70, 1019–1029 (2016).
Article CAS PubMed Google Scholar
Jehan, S. et al. Obstructive sleep apnea and obesity: implications for public health. Sleep. Med. Disord. 1, 00019 (2017).
PubMed PubMed Central Google Scholar
Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum. Reprod. Update 23, 646–659 (2017).
Article PubMed PubMed Central Google Scholar
Levine, H. et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum. Reprod. Update 29, 157–176 (2023).
Mital, P., Hinton, B. T. & Dufour, J. M. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858 (2011).
Article CAS PubMed PubMed Central Google Scholar
Free, M. J., Schluntz, G. A. & Jaffe, R. A. Respiratory gas tensions in tissues and fluids of the male rat reproductive tract. Biol. Reprod. 14, 481–488 (1976).
Article CAS PubMed Google Scholar
Rebourcet, D. et al. Sertoli cells modulate testicular vascular network development, structure, and function to influence circulating testosterone concentrations in adult male mice. Endocrinology 157, 2479–2488 (2016).
Article CAS PubMed PubMed Central Google Scholar
Bustamante-Marin, X. M., Cook, M. S., Gooding, J., Newgard, C. & Capel, B. Left-biased spermatogenic failure in 129/SvJ Dnd1Ter/+ mice correlates with differences in vascular architecture, oxygen availability, and metabolites. Biol. Reprod. 93, 78 (2015).
Article PubMed PubMed Central Google Scholar
Chiarini-Garcia, H., Raymer, A. & Russell, L. D. Non-random distribution of spermatogonia in rats: evidence of niches in the seminiferous tubules. Reproduction 126, 669–680 (2003).
Article CAS PubMed Google Scholar
Chiarini-Garcia, H., Hornick, J. R., Griswold, M. D. & Russell, L. D. Distribution of type a spermatogonia in the mouse is not random. Biol. Reprod. 65, 1179–1185 (2001).
Article CAS PubMed Google Scholar
Hara, K. et al. Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14, 658–672 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kaucher, A. V., Oatley, M. J. & Oatley, J. M. NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol. Reprod. 86, 161–111 (2012).
Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E. & Yoshida, S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328, 62–67 (2010).
Article CAS PubMed PubMed Central Google Scholar
Yoshida, S., Sukeno, M. & Nabeshima, Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726 (2007).
Article CAS PubMed Google Scholar
Chan, F. et al. Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes. Dev. 28, 1351–1362 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kitadate, Y. et al. Competition for mitogens regulates spermatogenic stem cell homeostasis in an open niche. Cell Stem Cell 24, 79–92.e6 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lord, T. & Oatley, J. M. Functional assessment of spermatogonial stem cell purity in experimental cell populations. Stem Cell Res. 29, 129–133 (2018).
Article CAS PubMed PubMed Central Google Scholar
Lord, T. & Oatley, J. M. A revised Asingle model to explain stem cell dynamics in the mouse male germline. Reproduction 154, R55–R64 (2017).
Article CAS PubMed PubMed Central Google Scholar
Zhang, F. et al. An extra-erythrocyte role of haemoglobin body in chondrocyte hypoxia adaption. Nature 622, 834–841 (2023).
Article CAS PubMed PubMed Central Google Scholar
Keppner, A. et al. Androglobin, a chimeric mammalian globin, is required for male fertility. eLife 11, e72374 (2022).
Article CAS PubMed PubMed Central Google Scholar
Bernstein, I. R. et al. The hypoxia-inducible factor EPAS1 is required for spermatogonial stem cell function in regenerative conditions. iScience 26, 108424 (2023).
Article CAS PubMed PubMed Central Google Scholar
Morimoto, H. et al. An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes. Dev. 35, 250–260 (2021).
Article CAS PubMed PubMed Central Google Scholar
Chou, S. C., Azuma, Y., Varia, M. A. & Raleigh, J. A. Evidence that involu
留言 (0)