Sudo, K. et al. Quantifying forms and functions of enterohepatic bile acid pools in mice. Cell. Mol. Gastroenterol. Hepatol. 18, 101392 (2024).
Article CAS PubMed PubMed Central Google Scholar
Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).
Article CAS PubMed Google Scholar
Nie, Q. et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 187, 2717–2734.e33 (2024).
Article CAS PubMed Google Scholar
Takei, H. et al. Characterization of long-chain fatty acid-linked bile acids: a major conjugation form of 3β-hydroxy bile acids in feces. J. Lipid Res. 63, 100275 (2022).
Article CAS PubMed PubMed Central Google Scholar
Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).
Article CAS PubMed PubMed Central Google Scholar
Mohanty, I. et al. The underappreciated diversity of bile acid modifications. Cell 187, 1801–1818.e20 (2024).
Article CAS PubMed Google Scholar
Guzior, D. V. et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature 626, 852–858 (2024).
Article CAS PubMed Google Scholar
Rimal, B. et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 626, 859–863 (2024).
Article CAS PubMed PubMed Central Google Scholar
Mohanty, I. et al. The changing metabolic landscape of bile acids – keys to metabolism and immune regulation. Nat. Rev. Gastroenterol. Hepatol. 21, 493–516 (2024).
Lee, M. H. et al. How bile acids and the microbiota interact to shape host immunity. Nat. Rev. Immunol. 24, 798–809 (2024).
Article CAS PubMed Google Scholar
Chiang, J. Y. L. & Ferrell, J. M. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol. Cell Endocrinol. 548, 111618 (2022).
Article CAS PubMed PubMed Central Google Scholar
Perino, A., Demagny, H., Velazquez-Villegas, L. & Schoonjans, K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 101, 683–731 (2021).
Article CAS PubMed Google Scholar
Wang, Y. et al. CYP8B1 catalyzes 12alpha-hydroxylation of C27 bile acid: in vitro conversion of dihydroxycoprostanic acid into trihydroxycoprostanic acid. Drug. Metab. Dispos. 52, 1234–1243 (2024).
Article CAS PubMed Google Scholar
Bennion, L. J. & Grundy, S. M. Effects of diabetes mellitus on cholesterol metabolism in man. N. Engl. J. Med. 296, 1365–1371 (1977).
Article CAS PubMed Google Scholar
Galman, C., Arvidsson, I., Angelin, B. & Rudling, M. Monitoring hepatic cholesterol 7α-hydroxylase activity by assay of the stable bile acid intermediate 7α-hydroxy-4-cholesten-3-one in peripheral blood. J. Lipid Res. 44, 859–866 (2003).
Article CAS PubMed Google Scholar
Steiner, C. et al. Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS ONE 6, e25006 (2011).
Article CAS PubMed PubMed Central Google Scholar
Haeusler, R. A. et al. Increased bile acid synthesis and impaired bile acid transport in human obesity. J. Clin. Endocrinol. Metab. 101, 1935–1944 (2016).
Article CAS PubMed Google Scholar
Chávez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694 (2017).
Li, T., Chanda, D., Zhang, Y., Choi, H.-S. & Chiang, J. Y. L. Glucose stimulates cholesterol 7α-hydroxylase gene transcription in human hepatocytes. J. Lipid Res. 51, 832–842 (2010).
Article CAS PubMed PubMed Central Google Scholar
Li, T. et al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J. Biol. Chem. 287, 1861–1873 (2012).
Article CAS PubMed Google Scholar
Higgins, V. et al. Postprandial dyslipidemia, hyperinsulinemia, and impaired gut peptides/bile acids in adolescents with obesity. J. Clin. Endocrinol. Metab. 105, 1228–1241 (2020).
Brufau, G. et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52, 1455–1464 (2010).
Article CAS PubMed Google Scholar
Ferrannini, E. et al. Increased bile acid synthesis and deconjugation after biliopancreatic diversion. Diabetes 64, 3377–3385 (2015).
Article CAS PubMed PubMed Central Google Scholar
Haeusler, R. A., Pratt-Hyatt, M., Welch, C. L., Klaassen, C. D. & Accili, D. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 15, 65–74 (2012).
Article CAS PubMed Google Scholar
Semova, I. et al. Insulin prevents hypercholesterolemia by suppressing 12α-hydroxylated bile acid production. Circulation 145, 969–982 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hoogerland, J. A. et al. Glucose-6-phosphate regulates hepatic bile acid synthesis in mice. Hepatology 70, 2171–2184 (2019).
Article CAS PubMed Google Scholar
Biddinger, S. B. et al. Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat. Med. 14, 778–782 (2008).
Article CAS PubMed PubMed Central Google Scholar
Kakiyama, G. et al. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J. Lipid Res. 61, 1629–1644 (2020).
Article CAS PubMed PubMed Central Google Scholar
Axelson, M. & Sjövall, J. Potential bile acid precursors in plasma – possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J. Steroid Biochem. 36, 631–640 (1990).
Article CAS PubMed Google Scholar
Haeusler, R. A., Astiarraga, B., Camastra, S., Accili, D. & Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62, 4184–4191 (2013).
Article CAS PubMed PubMed Central Google Scholar
Choucair, I. et al. Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases. J. Lipid Res. 61, 159–177 (2019).
留言 (0)