SNP rs6543176 is associated with extreme human longevity but increased risk for cancer

Sebastiani P, et al. Genetic signatures of exceptional longevity in humans. PLoS ONE. 2012;7:e29848. https://doi.org/10.1371/journal.pone.0029848.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan Q, Zhao JH, Zhang D, Kruse TA, Christensen K. Power for genetic association study of human longevity using the case-control design. Am J Epidemiol. 2008;168:890–6.

Article  PubMed  PubMed Central  Google Scholar 

Garagnani P, et al. Whole-genome sequencing analysis of semi-supercentenarians. Elife. 2021;10. https://doi.org/10.7554/eLife.57849.

Sebastiani P, Nussbaum L, Andersen SL, Black MJ, Perls TT. Increasing sibling relative risk of survival to older and older ages and the importance of precise definitions of “aging”, “life span”, and “longevity.” J Gerontol A Biol Sci Med Sci. 2016;71:340–6. https://doi.org/10.1093/gerona/glv020.

Article  PubMed  Google Scholar 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrucci L, et al. Measuring biological aging in humans: a quest. Aging Cell. 2020;19:e13080. https://doi.org/10.1111/acel.13080.

Article  CAS  PubMed  Google Scholar 

Sierra F. Editorial: Geroscience and the role of aging in the etiology and management of Alzheimer’s disease. J Prev Alzheimers Dis. 2020;7:2–3. https://doi.org/10.14283/jpad.2019.49.

Article  CAS  PubMed  Google Scholar 

Tesi N, et al. Polygenic risk score of longevity predicts longer survival across an age continuum. J Gerontol A Biol Sci Med Sci. 2021;76:750–9. https://doi.org/10.1093/gerona/glaa289.

Article  CAS  PubMed  Google Scholar 

Ryu S, et al. Genetic signature of human longevity in PKC and NF-κB signaling. Aging Cell. 2021;20:e13362. https://doi.org/10.1111/acel.13362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae H, et al. A genome-wide association study of 2304 extreme longevity cases identifies novel longevity variants. Int J Mol Sci. 2022;24. https://doi.org/10.3390/ijms24010116.

Deelen J, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun. 2019;10:3669. https://doi.org/10.1038/s41467-019-11558-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caruso C, et al. How important are genes to achieve longevity? Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23105635.

Wojczynski MK, et al. NIA long life family study: objectives, design, and heritability of cross-sectional and longitudinal phenotypes. J Gerontol A Biol Sci Med Sci. 2022;77:717–27. https://doi.org/10.1093/gerona/glab333.

Article  CAS  PubMed  Google Scholar 

Bae H, et al. A genome-wide association study of 2304 extreme longevity cases identifies novel longevity variants. Int J Mol Sci. 2023;24:116. https://doi.org/10.3390/ijms24010116.

Article  CAS  Google Scholar 

Sebastiani P, et al. Four genome-wide association studies identify new extreme longevity variants. J Gerontol A Biol Sci Med Sci. 2017;72:1453–64. https://doi.org/10.1093/gerona/glx027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gurinovich A, et al. Effect of longevity genetic variants on the molecular aging rate. Geroscience. 2021;43:1237–51. https://doi.org/10.1007/s11357-021-00376-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bell, F. & Miller, M. Life Tables for the United States Social Security Area 1900–2100. Actuarial Study No. 116. 2025.

Daw EW, et al. A paradigm for calling sequence in families: the long life family study. bioRxiv. 2024. https://doi.org/10.1101/2024.05.23.595584.

Gurinovich A, et al. Evaluation of GENESIS, SAIGE, REGENIE and fastGWA-GLMM for genome-wide association studies of binary traits in correlated data. Front Genet. 2022;13:897210. https://doi.org/10.3389/fgene.2022.897210.

Article  PubMed  PubMed Central  Google Scholar 

Song Z, Gurinovich A, Federico A, Monti S, Sebastiani P. nf-gwas-pipeline: a nextflow genome-wide association study pipeline. J Open Source Softw. 2021;6:2657. https://doi.org/10.21105/joss.02957.

Phenome-wide association studies of 258 ordinal categorical phenotypes on UK Biobank. https://polmm.leelabsg.org/.

FinnGen data freeze 9 results and summary statistics web browser. https://r9.finngen.fi/.

Sebastiani P, et al. Metabolite signatures of chronological age, aging, survival, and longevity. Cell Rep.2024;43. https://doi.org/10.1016/j.celrep.2024.114913.

Chen S, et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. bioRxiv. 2022. https://doi.org/10.1101/2022.03.20.485034.

Pilling LC, et al. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging (Albany NY). 2017;9:2504–20. https://doi.org/10.18632/aging.101334.

Article  CAS  PubMed  Google Scholar 

Ukraintseva S, et al. Puzzling role of genetic risk factors in human longevity: “risk alleles” as pro-longevity variants. Biogerontology. 2016;17:109–27. https://doi.org/10.1007/s10522-015-9600-1.

Article  CAS  PubMed  Google Scholar 

Reiman EM, et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11:667. https://doi.org/10.1038/s41467-019-14279-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lumsden AL, Mulugeta A, Zhou A, Hyppönen E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine. 2020;59:102954. https://doi.org/10.1016/j.ebiom.2020.102954.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao ZW, et al. The identification of a common different gene expression signature in patients with colorectal cancer. Math Biosci Eng. 2019;16:2942–58. https://doi.org/10.3934/mbe.2019145.

Article  PubMed  Google Scholar 

Zhang X, Hou J, Zhou G, Wang H, Wu Z. zDHHC3-mediated S-palmitoylation of SLC9A2 regulates apoptosis in kidney clear cell carcinoma. J Cancer Res Clin Oncol. 2024;150:194. https://doi.org/10.1007/s00432-024-05737-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dietrich S, et al. Identification of serum metabolites associated with incident hypertension in the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Hypertension. 2016;68:471–7. https://doi.org/10.1161/hypertensionaha.116.07292.

Article  CAS  PubMed  Google Scholar 

Liu T, et al. The association of serum serine levels with the risk of incident cancer: results from a nested case-control study. Food Funct. 2023;14:7969–76. https://doi.org/10.1039/d3fo00808h.

Article  CAS  PubMed  Google Scholar 

Cadoni G, et al. Prognostic role of serum amino acids in head and neck cancer. Dis Markers. 2020;2020:2291759. https://doi.org/10.1155/2020/2291759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. LID - e201907022. https://doi.org/10.1083/jcb.201907022.

留言 (0)

沒有登入
gif