Andersen JV, Schousboe A, Milestone, Review (2023) Metabolic dynamics of glutamate and GABA mediated neurotransmission - the essential roles of astrocytes. J Neurochem 166(2):109–137. https://doi.org/10.1111/jnc.15811Epub 2023 Mar 29. PMID: 36919769
Article PubMed CAS Google Scholar
McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94(12):1561–1571. https://doi.org/10.1002/jnr.23908Epub 2016 Sep 15. PMID: 27629247
Article PubMed CAS Google Scholar
Son H, Kim S, Jung DH, Baek JH, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Lee DK, Kim HJ (2019) Insufficient glutamine synthetase activity during synaptogenesis causes spatial memory impairment in adult mice. Sci Rep 9(1):252. https://doi.org/10.1038/s41598-018-36619-2
Article PubMed PubMed Central CAS Google Scholar
Zehnder T, Petrelli F, Romanos J, De Oliveira Figueiredo EC, Lewis TL Jr, Déglon N, Polleux F, Santello M, Bezzi P (2021) Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Rep 35(2):108952. https://doi.org/10.1016/j.celrep.2021.108952
Article PubMed CAS Google Scholar
Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A, Aldana BI, Waagepetersen HS (2021) Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Dis 148:105198. https://doi.org/10.1016/j.nbd.2020.105198
Article PubMed CAS Google Scholar
Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Möbius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Pérez-Samartín A, Pérez-Cerdá F, Bakhtiari D, Matute C, Löwel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA (2016) Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron 91(1):119–132. https://doi.org/10.1016/j.neuron.2016.05.016
Article PubMed PubMed Central CAS Google Scholar
Looser ZJ, Faik Z, Ravotto L, Zanker HS, Jung RB, Werner HB, Ruhwedel T, Möbius W, Bergles DE, Barros LF, Nave KA, Weber B, Saab AS (2024) Oligodendrocyte-axon metabolic coupling is mediated by extracellular K + and maintains axonal health. Nat Neurosci 27(3):433–448. https://doi.org/10.1038/s41593-023-01558-3
Article PubMed PubMed Central CAS Google Scholar
Shen Y, Kapfhamer D, Minnella AM, Kim JE, Won SJ, Chen Y, Huang Y, Low LH, Massa SM, Swanson RA (2017) Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun 8(1):624. https://doi.org/10.1038/s41467-017-00707-0
Article PubMed PubMed Central CAS Google Scholar
De Paula GC, Aldana BI, Battistella R, Fernández-Calle R, Bjure A, Lundgaard I, Deierborg T, Duarte JMN (2024) Extracellular vesicles released from microglia after palmitate exposure impact brain function. J Neuroinflammation 21(1):173. https://doi.org/10.1186/s12974-024-03168-7
Article PubMed PubMed Central CAS Google Scholar
Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.001
Article PubMed PubMed Central CAS Google Scholar
Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83(4):1140–1144. https://doi.org/10.1073/pnas.83.4.1140
Article PubMed PubMed Central CAS Google Scholar
Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464. https://doi.org/10.1126/science.3260686
Article PubMed CAS Google Scholar
Hyder F, Rothman DL (2012) Quantitative fMRI and oxidative neuroenergetics. NeuroImage 62(2):985–994. https://doi.org/10.1016/j.neuroimage.2012.04.027
Article PubMed CAS Google Scholar
DiNuzzo M, Dienel GA, Behar KL, Petroff OA, Benveniste H, Hyder F, Giove F, Michaeli S, Mangia S, Herculano-Houzel S, Rothman DL (2024) Neurovascular coupling is optimized to compensate for the increase in proton production from nonoxidative glycolysis and glycogenolysis during brain activation and maintain homeostasis of pH, pCO2, and pO2. J Neurochem 168(5):632–662. https://doi.org/10.1111/jnc.15839
Article PubMed CAS Google Scholar
Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99(1):949–1045. https://doi.org/10.1152/physrev.00062.2017
Article PubMed CAS Google Scholar
Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A 88(13):5829–5831. https://doi.org/10.1073/pnas.88.13.5829
Article PubMed PubMed Central CAS Google Scholar
Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 12(4):584–592. https://doi.org/10.1038/jcbfm.1992.82
Article PubMed CAS Google Scholar
Mangia S, Tkác I, Gruetter R, Van de Moortele PF, Maraviglia B, Uğurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063. https://doi.org/10.1038/sj.jcbfm.9600401
Article PubMed CAS Google Scholar
Schaller B, Mekle R, Xin L, Kunz N, Gruetter R (2013) Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 tesla. J Neurosci Res 91(8):1076–1083. https://doi.org/10.1002/jnr.23194
Article PubMed CAS Google Scholar
Schaller B, Xin L, O’Brien K, Magill AW, Gruetter R (2014) Are glutamate and lactate increases ubiquitous to physiological activation? A (1)H functional MR spectroscopy study during motor activation in human brain at 7Tesla. NeuroImage 93(Pt 1):138–145. https://doi.org/10.1016/j.neuroimage.2014.02.016
Article PubMed CAS Google Scholar
Boillat Y, Xin L, van der Zwaag W, Gruetter R (2020) Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: a functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 40(3):488–500. https://doi.org/10.1177/0271678X19831022
Koush Y, de Graaf RA, Kupers R, Dricot L, Ptito M, Behar KL, Rothman DL, Hyder F (2021) Metabolic underpinnings of activated and deactivated cortical areas in human brain. J Cereb Blood Flow Metab 41(5):986–1000. https://doi.org/10.1177/0271678X21989186
Article PubMed PubMed Central CAS Google Scholar
DiNuzzo M, Mangia S, Moraschi M, Mascali D, Hagberg GE, Giove F (2022) Perception is associated with the brain’s metabolic response to sensory stimulation. Elife 11:e71016. https://doi.org/10.7554/eLife.71016
Article PubMed PubMed Central CAS Google Scholar
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F (2022) Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab 42(6):911–934. https://doi.org/10.1177/0271678X221076570
Article PubMed PubMed Central CAS Google Scholar
Sonnay S, Duarte JMN, Just N (2017) Lactate and glutamate dynamics during prolonged stimulation of the rat barrel cortex suggest adaptation of cerebral glucose and oxygen metabolism. Neuroscience 346:337–348. https://doi.org/10.1016/j.neuroscience.2017.01.034
留言 (0)