Shao YH, Demissie K, Shih W et al (2009) Contemporary risk profile of prostate cancer in the United States. J Natl Cancer Inst 101:1280–1283. https://doi.org/10.1093/jnci/djp262
Article PubMed PubMed Central Google Scholar
Fletcher SA, von Landenberg N, Cole AP et al (2020) Contemporary national trends in prostate cancer risk profile at diagnosis. Prostate Cancer Prostatic Dis 23(1):81–87. https://doi.org/10.1038/s41391-019-0157-y
Article CAS PubMed Google Scholar
Preisser F, Cooperberg MR, Crook J et al (2020) Intermediate-risk Prostate Cancer: Stratification and Management. Eur Urol Oncol 3(3):270–280. https://doi.org/10.1016/j.euo.2020.03.002
Nayan M, Carvalho FLF, Feldman AS (2022) Active surveillance for intermediate-risk prostate cancer. World J Urol 40(1):79–86. https://doi.org/10.1007/s00345-021-03893-1
Baboudjian M, Breda A, Rajwa P et al (2022) Active Surveillance for Intermediate-risk Prostate Cancer: A Systematic Review, Meta-analysis, and Metaregression. Eur Urol Oncol 5(6):617–627. https://doi.org/10.1016/j.euo.2022.07.004
Oh JJ, Ahn H, Hwang SI et al (2021) Favorable intermediate risk prostate cancer with biopsy Gleason score of 6. BMC Urol 21(1):52. https://doi.org/10.1186/s12894-021-00827-2
Article CAS PubMed PubMed Central Google Scholar
Nocera L, Collà Ruvolo C, Stolzenbach LF et al (2021) Improving the stratification of intermediate risk prostate cancer. Minerva Urol Nephrol 74(5):590–598. https://doi.org/10.23736/S2724-6051.21.04314-7
Liang Z, Yuliang C, Zhu M et al (2023) The direct prognosis comparison of 125I low-dose-rate brachytherapy versus laparoscopic radical prostatectomy for patients with intermediate-risk prostate cancer. Eur J Med Res 28(1):181. https://doi.org/10.1186/s40001-023-01140-4
Article PubMed PubMed Central Google Scholar
Blazevski A, Scheltema MJ, Yuen B (2020) Oncological and Quality-of-life Outcomes Following Focal Irreversible Electroporation as Primary Treatment for Localised Prostate Cancer: A Biopsy-monitored Prospective Cohort. Eur Urol Oncol 3(3):283–290. https://doi.org/10.1016/j.euo.2019.04.008
Michalski JM, Winter KA, Prestidge BR et al (2023) Effect of Brachytherapy With External Beam Radiation Therapy Versus Brachytherapy Alone for Intermediate-Risk Prostate Cancer: NRG Oncology RTOG 0232 Randomized Clinical Trial. J Clin Oncol 41(24):4035–4044. https://doi.org/10.1200/JCO.22.01856
Article CAS PubMed PubMed Central Google Scholar
Krauss DJ, Karrison T, Martinez AA et al (2023) Dose-Escalated Radiotherapy Alone or in Combination With Short-Term Androgen Deprivation for Intermediate-Risk Prostate Cancer: Results of a Phase III Multi-Institutional Trial. J Clin Oncol 41(17):3203–3216. https://doi.org/10.1200/JCO.22.02390. (Epub 2023 Apr 27)
Article CAS PubMed PubMed Central Google Scholar
Stolzenbach LF, Nocera L, Collà-Ruvolo C et al (2021) Improving the Stratification of Patients With Intermediate-risk Prostate Cancer. Clin Genitourin Cancer 19(2):e120–e128. https://doi.org/10.1016/j.clgc.2020.11.003
Spratt DE, Liu VYT, Michalski J et al (2023) Genomic Classifier Performance in Intermediate-Risk Prostate Cancer: Results From NRG Oncology/RTOG 0126 Randomized Phase 3 Trial. Int J Radiat Oncol Biol Phys 117(2):370–377. https://doi.org/10.1016/j.ijrobp.2023.04.010
Article PubMed PubMed Central Google Scholar
Khajir G, Press B, Lokeshwar S, et al. (2023) Prostate cancer risk stratification using magnetic resonance imaging-ultrasound fusion vs systematic prostate biopsy. JNCI Cancer Spectr. 7(6):pkad099. https://doi.org/10.1093/jncics/pkad099.
Zattoni F, Matrone F, Bortolus R, Giannarini G (2024) Navigating the evolving diagnostic and therapeutic landscape of low- and intermediate-risk prostate cancer. Asian J Androl 26(6):549–556. https://doi.org/10.4103/aja20249
Article PubMed PubMed Central Google Scholar
Cuocolo R, Cipullo MB, Stanzione A et al (2020) Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol 30(12):6877–6887. https://doi.org/10.1007/s00330-020-07027-w
Sun Z, Wu P, Cui Y (2023) Deep-Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi-Parametric MRI. J Magn Reson Imaging 58(4):1067–1081. https://doi.org/10.1002/jmri.28608
Ayyıldız H, İnce O, Korkut E et al (2024) Machine learning models for discriminating clinically significant from clinically insignificant prostate cancer using bi-parametric magnetic resonance imaging. Diagn Interv Radiol. https://doi.org/10.4274/dir.2024.242856
Chiu PK, Shen X, Wang G (2021) Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study. Prostate Cancer Prostatic Dis 25(4):672–676. https://doi.org/10.1038/s41391-021-00429-x
Lu W, Zhao L, Wang S (2024) Explainable and visualizable machine learning models to predict biochemical recurrence of prostate cancer. Clin Transl Oncol 26(9):2369–2379. https://doi.org/10.1007/s12094-024-03480-x
Alabi RO, Mäkitie AA, Pirinen M (2020) Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer. Int J Med Inform. https://doi.org/10.1016/j.ijmedinf.2020.104313
Mohler JL, Antonarakis ES, Armstrong AJ, (2019) Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 17(5):479–505. https://doi.org/10.6004/jnccn.2019.0023.
Nykodym T, Kraljevic T, Wang A, Wong W, Generalized linear modeling with h2o. Published by H2O. ai Inc [online]. 2016 [visited on 2023–04–23]. Available from: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/GLMBooklet.pdf, (2016).
Vickers AJ, Van Calster B, Steyerberg EW (2016) Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 25(352):i6. https://doi.org/10.1136/bmj.i6
van Leenders GJLH, van der Kwast TH, Grignon DJ, et al. (2020) ISUP Grading Workshop Panel Members. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol. 44(8):e87-e99. https://doi.org/10.1097/PAS.0000000000001497.
Mottet N, van den Bergh RCN, Briers E, et al. (2021) Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 79(2):243–262. https://doi.org/10.1016/j.eururo.2020.09.042.
Park DH, Yu JH (2023) Prostate-specific antigen density as the best predictor of low- to intermediate-risk prostate cancer: a cohort study. Transl Cancer Res 12(3):502–514. https://doi.org/10.21037/tcr-22-1855
Article CAS PubMed PubMed Central Google Scholar
Görtz M, Radtke JP, Hatiboglu G (2021) The Value of Prostate-specific Antigen Density for Prostate Imaging-Reporting and Data System 3 Lesions on Multiparametric Magnetic Resonance Imaging: A Strategy to Avoid Unnecessary Prostate Biopsies. Eur Urol Focus 7(2):325–331. https://doi.org/10.1016/j.euf.2019.11.012
Jalali A, Foley RW, Maweni RM, Murphy K et al (2020) A risk calculator to inform the need for a prostate biopsy: a rapid access clinic cohort. BMC Med Inform Decis Mak 20(1):148. https://doi.org/10.1186/s12911-020-01174-2
Article PubMed PubMed Central Google Scholar
Zhu M, Sali R, Baba F (2024) Artificial intelligence in pathologic diagnosis, prognosis and prediction of prostate cancer. Am J Clin Exp Urol 12(4):200–215. https://doi.org/10.62347/JSAE9732
Article PubMed PubMed Central Google Scholar
White C, Staff I, McLaughlin T (2021) Does post prostatectomy decipher score predict biochemical recurrence and impact care? World J Urol 39(9):3281–3286. https://doi.org/10.1007/s00345-021-03661-1
Baude J, Caubet M, Defer B (2022) Combining androgen deprivation and radiation therapy in the treatment of localised prostate cancer: Summary of level 1 evidence and current gaps in knowledge. Clin Transl Radiat Oncol 37:1–11. https://doi.org/10.1016/j.ctro.2022.07.008
留言 (0)