Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal health

Pizzorno J (2015) The kidney dysfunction epidemic, part 1: causes. Integr Med (Encinitas). 14(6):8–13

PubMed  PubMed Central  Google Scholar 

Lousa I, Reis F, Beirão I, Alves R, Belo L, Santos-Silva A (2021) New potential biomarkers for chronic kidney disease management — a review of the literature. Int J Mol Sci 22:1–37. https://doi.org/10.3390/ijms22010043

Article  CAS  Google Scholar 

Podkowińska A, Formanowicz D (2020) Chronic kidney disease as oxidative stress-and inflammatory-mediated cardiovascular disease. Antioxidants 9:1–54. https://doi.org/10.3390/antiox9080752

Article  CAS  Google Scholar 

Olsen E, van Galen G (2022) Chronic renal failure-causes, clinical findings, treatments and prognosis. Veterin Clin North America Equine Pract. https://doi.org/10.1016/j.cveq.2021.11.003

Article  Google Scholar 

Gunay E, Kaya S, Baysal B, Yuksel E, Arac E (2020) Evaluation of prognosis and nephrotoxicity in patients treated with colistin in intensive care unit. Ren Fail. https://doi.org/10.1080/0886022X.2020.1795878

Article  PubMed  PubMed Central  Google Scholar 

Jacob J, Dannenhoffer J, Rutter A (2020) Acute kidney injury. Prim Care Clin Office Pract 47:571–584. https://doi.org/10.1016/j.pop.2020.08.008

Article  Google Scholar 

Shi Y, Xu L, Tang J, Fang L, Ma S, Ma X et al (2017) Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. Am J Physiol Renal Physiol. https://doi.org/10.1152/ajprenal.00546.2016

Article  PubMed  PubMed Central  Google Scholar 

Sharma V, Singh TG (2023) Drug induced nephrotoxicity- a mechanistic approach. Mol Biol Rep. https://doi.org/10.1007/s11033-023-08573-4

Article  PubMed  PubMed Central  Google Scholar 

Dhanraj G, Shanmugam R (2021) Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea. J Nanomater 2021:1–9. https://doi.org/10.1155/2021/8115585

Article  CAS  Google Scholar 

Shanmugam R, Chelladurai M, Vanaja M, Gurusamy A (2016) Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J Mol Struct. https://doi.org/10.1016/j.molstruc.2016.03.044

Article  Google Scholar 

Baig NKI, Wail F (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2:1821–1871

Article  Google Scholar 

Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials. https://doi.org/10.3390/ma8115377

Article  PubMed  PubMed Central  Google Scholar 

Soares S, Sousa J, Pais A, Vitorino C (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem. https://doi.org/10.3389/fchem.2018.00360

Article  PubMed  PubMed Central  Google Scholar 

Gupta D, Boora A, Thakur A, Gupta TK (2023) Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ Res. https://doi.org/10.1016/j.envres.2023.116316

Article  PubMed  Google Scholar 

Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02138-3

Article  PubMed  Google Scholar 

Liu L, Li Y, AL-Huqail AA, Ali E, Alkhalifah T, Alturise F et al (2023) Green synthesis of Fe3O4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.138638

Article  PubMed  PubMed Central  Google Scholar 

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnol. https://doi.org/10.1186/s12951-018-0408-4

Article  Google Scholar 

Salavati MS, Amini SM, Nooshadokht M, Shahabi A, Sharifi F, Afgar A et al (2022) Enhanced colloidal stability of silver nanoparticles by green synthesis approach: characterization and anti-leishmaniasis activity. NANO 17:2250052. https://doi.org/10.1142/S1793292022500527

Article  CAS  Google Scholar 

Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB et al (2022) Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 155:113791. https://doi.org/10.1016/j.biopha.2022.113791

Article  CAS  PubMed  Google Scholar 

Ge XCZCL (2022) The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants (Basel). https://doi.org/10.3390/antiox11040791

Article  PubMed  PubMed Central  Google Scholar 

Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583. https://doi.org/10.1016/j.bbrc.2010.04.156

Article  CAS  PubMed  Google Scholar 

Sengul A, Asmatulu E (2020) Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01033-6

Article  Google Scholar 

Vairavel M, Devaraj E, Shanmugam R (2020) An eco-friendly synthesis of Enterococcus sp.–mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-07511-x

Article  Google Scholar 

Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4:411

CAS  PubMed  Google Scholar 

Ryan M, Williams EAJDAH (2016) Nanomedicines for kidney diseases. Kidney Int 90:740–745

Article  Google Scholar 

Dobrek L (2023) A synopsis of current theories on drug-induced nephrotoxicity. Life. https://doi.org/10.3390/life13020325

Article  PubMed  PubMed Central  Google Scholar 

Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB (2022) Pharmacological Effects of Cisplatin Combination with Natural products in cancer chemotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms23031532

Article  PubMed  PubMed Central  Google Scholar 

Perše M, Večerić-Haler Ž (2018) Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int. https://doi.org/10.1155/2018/1462802

Article  PubMed  PubMed Central  Google Scholar 

Rankin GO, Valentovic MA (2018) Historical perspective of nephrotoxicity. Toxicol Sci 164:377–378. https://doi.org/10.1093/toxsci/kfy169

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forni L, Darmon M, Ostermann M, Oudemans H, Pettilä V, Prowle J et al (2017) Renal recovery after acute kidney injury. Intens Care Med. https://doi.org/10.1007/s00134-017-4809-x

Article  Google Scholar 

Mihevc M, Petreski T, Maver U, Bevc S (2020) Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 47:9865–9882. https://doi.org/10.1007/s11033-020-05977-4

Article  CAS  PubMed  Google Scholar 

McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V (2021) Mechanisms of cisplatin-induced acute kidney injury: Pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers (Basel). https://doi.org/10.3390/cancers13071572

Article  PubMed  PubMed Central  Google Scholar 

Zhang S, Zhong X, Yuan H, Guo Y, Song D, Qi F et al (2020) Interfering in apoptosis and DNA repair of cancer cells to conquer cisplatin resistance by platinum(iv) prodrugs. Chem Sci. https://doi.org/10.1039/d0sc00197j

Article 

留言 (0)

沒有登入
gif