Pizzorno J (2015) The kidney dysfunction epidemic, part 1: causes. Integr Med (Encinitas). 14(6):8–13
PubMed PubMed Central Google Scholar
Lousa I, Reis F, Beirão I, Alves R, Belo L, Santos-Silva A (2021) New potential biomarkers for chronic kidney disease management — a review of the literature. Int J Mol Sci 22:1–37. https://doi.org/10.3390/ijms22010043
Podkowińska A, Formanowicz D (2020) Chronic kidney disease as oxidative stress-and inflammatory-mediated cardiovascular disease. Antioxidants 9:1–54. https://doi.org/10.3390/antiox9080752
Olsen E, van Galen G (2022) Chronic renal failure-causes, clinical findings, treatments and prognosis. Veterin Clin North America Equine Pract. https://doi.org/10.1016/j.cveq.2021.11.003
Gunay E, Kaya S, Baysal B, Yuksel E, Arac E (2020) Evaluation of prognosis and nephrotoxicity in patients treated with colistin in intensive care unit. Ren Fail. https://doi.org/10.1080/0886022X.2020.1795878
Article PubMed PubMed Central Google Scholar
Jacob J, Dannenhoffer J, Rutter A (2020) Acute kidney injury. Prim Care Clin Office Pract 47:571–584. https://doi.org/10.1016/j.pop.2020.08.008
Shi Y, Xu L, Tang J, Fang L, Ma S, Ma X et al (2017) Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. Am J Physiol Renal Physiol. https://doi.org/10.1152/ajprenal.00546.2016
Article PubMed PubMed Central Google Scholar
Sharma V, Singh TG (2023) Drug induced nephrotoxicity- a mechanistic approach. Mol Biol Rep. https://doi.org/10.1007/s11033-023-08573-4
Article PubMed PubMed Central Google Scholar
Dhanraj G, Shanmugam R (2021) Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea. J Nanomater 2021:1–9. https://doi.org/10.1155/2021/8115585
Shanmugam R, Chelladurai M, Vanaja M, Gurusamy A (2016) Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J Mol Struct. https://doi.org/10.1016/j.molstruc.2016.03.044
Baig NKI, Wail F (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2:1821–1871
Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials. https://doi.org/10.3390/ma8115377
Article PubMed PubMed Central Google Scholar
Soares S, Sousa J, Pais A, Vitorino C (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem. https://doi.org/10.3389/fchem.2018.00360
Article PubMed PubMed Central Google Scholar
Gupta D, Boora A, Thakur A, Gupta TK (2023) Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ Res. https://doi.org/10.1016/j.envres.2023.116316
Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02138-3
Liu L, Li Y, AL-Huqail AA, Ali E, Alkhalifah T, Alturise F et al (2023) Green synthesis of Fe3O4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.138638
Article PubMed PubMed Central Google Scholar
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnol. https://doi.org/10.1186/s12951-018-0408-4
Salavati MS, Amini SM, Nooshadokht M, Shahabi A, Sharifi F, Afgar A et al (2022) Enhanced colloidal stability of silver nanoparticles by green synthesis approach: characterization and anti-leishmaniasis activity. NANO 17:2250052. https://doi.org/10.1142/S1793292022500527
Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB et al (2022) Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed Pharmacother 155:113791. https://doi.org/10.1016/j.biopha.2022.113791
Article CAS PubMed Google Scholar
Ge XCZCL (2022) The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants (Basel). https://doi.org/10.3390/antiox11040791
Article PubMed PubMed Central Google Scholar
Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583. https://doi.org/10.1016/j.bbrc.2010.04.156
Article CAS PubMed Google Scholar
Sengul A, Asmatulu E (2020) Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01033-6
Vairavel M, Devaraj E, Shanmugam R (2020) An eco-friendly synthesis of Enterococcus sp.–mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-07511-x
Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4:411
Ryan M, Williams EAJDAH (2016) Nanomedicines for kidney diseases. Kidney Int 90:740–745
Dobrek L (2023) A synopsis of current theories on drug-induced nephrotoxicity. Life. https://doi.org/10.3390/life13020325
Article PubMed PubMed Central Google Scholar
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB (2022) Pharmacological Effects of Cisplatin Combination with Natural products in cancer chemotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms23031532
Article PubMed PubMed Central Google Scholar
Perše M, Večerić-Haler Ž (2018) Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int. https://doi.org/10.1155/2018/1462802
Article PubMed PubMed Central Google Scholar
Rankin GO, Valentovic MA (2018) Historical perspective of nephrotoxicity. Toxicol Sci 164:377–378. https://doi.org/10.1093/toxsci/kfy169
Article CAS PubMed PubMed Central Google Scholar
Forni L, Darmon M, Ostermann M, Oudemans H, Pettilä V, Prowle J et al (2017) Renal recovery after acute kidney injury. Intens Care Med. https://doi.org/10.1007/s00134-017-4809-x
Mihevc M, Petreski T, Maver U, Bevc S (2020) Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 47:9865–9882. https://doi.org/10.1007/s11033-020-05977-4
Article CAS PubMed Google Scholar
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V (2021) Mechanisms of cisplatin-induced acute kidney injury: Pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers (Basel). https://doi.org/10.3390/cancers13071572
Article PubMed PubMed Central Google Scholar
Zhang S, Zhong X, Yuan H, Guo Y, Song D, Qi F et al (2020) Interfering in apoptosis and DNA repair of cancer cells to conquer cisplatin resistance by platinum(iv) prodrugs. Chem Sci. https://doi.org/10.1039/d0sc00197j
留言 (0)