Thipsawat S (2021) Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: a review of the literature. Diabetes Vasc Dis Res. https://doi.org/10.1177/14791641211058856
Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2009.10.007
Maggiore U, Budde K, Heemann U, Hilbrands L, Oberbauer R, Oniscu GC, Pascual J, Schwartz Sorensen S, Viklicky O, Abramowicz D (2017) Long-term risks of kidney living donation: Review and position paper by the era-edta descartes working group. Nephrol Dial Transpl. https://doi.org/10.1093/ndt/gfw429
Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. https://doi.org/10.2215/cjn.11491116
Article PubMed PubMed Central Google Scholar
Beckman JA, Creager MA (2016) Vascular complications of diabetes. Circ Res. https://doi.org/10.1161/circresaha.115.306884
Xiang M, Wang Y, Gao Z, Wang J, Chen Q, Sun Z, Liang J, Xu J (2022) Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: a Mendelian randomization. Front Immunol. https://doi.org/10.3389/fimmu.2022.985729
Article PubMed PubMed Central Google Scholar
Groza Y, Jemelkova J, Kafkova LR, Maly P, Raska M (2022) Il-6 and its role in iga nephropathy development. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2022.04.001
Kondo N, Kuroda T, Kobayashi D (2021) Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. https://doi.org/10.3390/ijms222010922
Article PubMed PubMed Central Google Scholar
Ruster C, Wolf G (2008) The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci. https://doi.org/10.2741/2734
Feigerlová E, Battaglia-Hsu SF (2017) Il-6 signaling in diabetic nephropathy: from pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2017.03.003
Wootton RE, Richmond RC, Stuijfzand BG, Lawn RB, Sallis HM, Taylor GMJ, Hemani G, Jones HJ, Zammit S, Davey Smith G et al (2020) Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol Med. https://doi.org/10.1017/s0033291719002678
Article PubMed PubMed Central Google Scholar
Sekula P, Del Greco MF, Pattaro C, Köttgen A (2016) Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. https://doi.org/10.1681/asn.2016010098
Article PubMed PubMed Central Google Scholar
Boef AG, Dekkers OM, le Cessie S (2015) Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol. https://doi.org/10.1093/ije/dyv071
Ma Q, Wen X, Xu G (2024) The causal association of specific gut microbiota on the risk of membranous nephropathy: a Mendelian randomization study. Int Urol Nephrol. https://doi.org/10.1007/s11255-023-03926-1
Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman AK, Schork A, Page K, Zhernakova DV, Wu Y, Peters J et al (2020) Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. https://doi.org/10.1038/s42255-020-00287-2
Article PubMed PubMed Central Google Scholar
Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, Narita A, Konuma T, Yamamoto K, Akiyama M et al (2021) A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. https://doi.org/10.1038/s41588-021-00931-x
Article PubMed PubMed Central Google Scholar
Ma Q, Xu G (2024) Causal association between cardiovascular proteins and membranous nephropathy: a bidirectional Mendelian randomization. Int Urol Nephrol. https://doi.org/10.1007/s11255-024-04004-w
Burgess S, Thompson SG (2013) Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol. https://doi.org/10.1093/ije/dyt093
Article PubMed PubMed Central Google Scholar
Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. https://doi.org/10.1093/ije/dyr036
Wang F, Li N, Ni S, Min Y, Wei K, Sun H, Fu Y, Liu Y, Lv D (2023) The effects of specific gut microbiota and metabolites on iga nephropathy-based on Mendelian randomization and clinical validation. Nutrients. https://doi.org/10.3390/nu15102407
Article PubMed PubMed Central Google Scholar
Fang P, He B, Yu M, Shi M, Zhu Y, Zhang Z, Bo P (2018) Central galanin receptor 2 mediates galanin action to promote systemic glucose metabolism of type 2 diabetic rats. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2018.08.036
Article PubMed PubMed Central Google Scholar
Abot A, Lucas A, Bautzova T, Bessac A, Fournel A, Le-Gonidec S, Valet P, Moro C, Cani PD, Knauf C (2018) Galanin enhances systemic glucose metabolism through enteric nitric oxide synthase-expressed neurons. Mol Metab. https://doi.org/10.1016/j.molmet.2018.01.020
Article PubMed PubMed Central Google Scholar
Fang P, Yu M, Shi M, Bo P, Zhang Z (2020) Galanin peptide family regulation of glucose metabolism. Front Neuroendocrinol. https://doi.org/10.1016/j.yfrne.2019.100801
Yun R, Dourmashkin JT, Hill J, Gayles EC, Fried SK, Leibowitz SF (2005) Pvn galanin increases fat storage and promotes obesity by causing muscle to utilize carbohydrate more than fat. Peptides. https://doi.org/10.1016/j.peptides.2005.04.005
Fang P, Yu M, Shi M, He B, Zhang Z, Bo P (2013) The neuropeptide galanin benefits insulin sensitivity in subjects with type 2 diabetes. Curr Protein Pept Sci. https://doi.org/10.2174/1389203711209070611
Cha JJ, Park BY, Yoon SG, Park HJ, Yoo JA, Ghee JY, Cha DR, Seong JY, Kang YS (2023) Spexin-based galanin receptor 2 agonist improves renal injury in mice with type 2 diabetes. Anim Cells Syst (Seoul). https://doi.org/10.1080/19768354.2023.2263067
Courivaud C, Bamoulid J, Loupy A, Deschamps M, Ferrand C, Simula-Faivre D, Tiberghien P, Chalopin JM, Legendre C, Thervet E et al (2013) Influence of fractalkine receptor gene polymorphisms v249i–t280m on cancer occurrence after renal transplantation. Transplantation. https://doi.org/10.1097/TP.0b013e31827d61cb
McDermott DH, Fong AM, Yang Q, Sechler JM, Cupples LA, Merrell MN, Wilson PW, D’Agostino RB, O’Donnell CJ, Patel DD et al (2003) Chemokine receptor mutant cx3cr1-m280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest. https://doi.org/10.1172/jci16790
Article PubMed PubMed Central Google Scholar
Abdou AE, Anani HAA, Ibrahim HF, Ebrahem EE, Seliem N, Youssef EMI, Ghoraba NM, Hassan AS, Ramadan MAA, Mahmoud E et al (2022) Urinary igg, serum cx3cl1 and mirna-152–3p: as predictors of nephropathy in egyptian type 2 diabetic patients. Tissue Barriers. https://doi.org/10.1080/21688370.2021.1994823
Galkina E, Ley K (2006) Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol. https://doi.org/10.1681/asn.2005080859
Hu Y, Tang W, Liu W, Hu Z, Pan C (2022) Astragaloside iv alleviates renal tubular epithelial-mesenchymal transition via cx3cl1-raf/mek/erk signaling pathway in diabetic kidney disease. Drug Des Dev Ther.
留言 (0)