Bi, J. & Wang, Y. F. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect Sci. 27, 846–858 (2020).
Hueffer, K. et al. Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Sci. Rep. 7, 12818 (2017).
Article PubMed PubMed Central Google Scholar
Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11, 13 (2011).
Article PubMed PubMed Central Google Scholar
Vyas, A. & Sapolsky, R. Manipulation of host behaviour by Toxoplasma gondii: what is the minimum a proposed proximate mechanism should explain? Folia Parasitol. 57, 88–94 (2010).
Hosokawa, T. & Fukatsu, T. Relevance of microbial symbiosis to insect behavior. Curr. Opin. Insect Sci. 39, 91–100 (2020).
Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).
Article CAS PubMed Google Scholar
Ahmed, H. et al. Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes 14, 2102878 (2022).
Article PubMed PubMed Central Google Scholar
Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).
Article CAS PubMed Google Scholar
Generoso, J. S., Giridharan, V. V., Lee, J., Macedo, D. & Barichello, T. The role of the microbiota–gut–brain axis in neuropsychiatric disorders. Braz. J. Psychiatry 43, 293–305 (2021).
Person, H. & Keefer, L. Psychological comorbidity in gastrointestinal diseases: update on the brain–gut–microbiome axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 107, 110209 (2021).
Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cryan, J. F. & Mazmanian, S. K. Microbiota–brain axis: context and causality. Science 376, 938–939 (2022).
Article CAS PubMed Google Scholar
Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).
Article CAS PubMed PubMed Central Google Scholar
Sammons, M. et al. Brain–body physiology: local, reflex, and central communication. Cell 187, 5877–5890 (2024).
Article CAS PubMed PubMed Central Google Scholar
Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).
Article PubMed PubMed Central Google Scholar
Backhed, F. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab. 58, 44–52 (2011).
Aburto, M. R. & Cryan, J. F. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis. Nat. Rev. Gastroenterol. Hepatol. 21, 222–247 (2024).
Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).
Article CAS PubMed Google Scholar
Oleskin, A. V. & Shenderov, B. A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 27, 30971 (2016).
Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). This study shows that acetate produced by the gut microbiota can enter the brain and directly regulate hypothalamic control of appetite.
Article CAS PubMed Google Scholar
Falomir-Lockhart, L. J., Cavazzutti, G. F., Gimenez, E. & Toscani, A. M. Fatty acid signaling mechanisms in neural cells: fatty acid receptors. Front. Cell. Neurosci. 13, 162 (2019).
Article CAS PubMed PubMed Central Google Scholar
Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).
Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022).
Article CAS PubMed PubMed Central Google Scholar
Klein Wolterink, R. G. J., Wu, G. S., Chiu, I. M. & Veiga-Fernandes, H. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 45, 339–360 (2022). This review provides an overview of the crosstalk between the nervous system and immune system in various organs and its role in tissue homeostasis.
Article CAS PubMed Google Scholar
Florsheim, E. B. et al. Immune sensing of food allergens promotes avoidance behaviour. Nature 620, 643–650 (2023).
Article CAS PubMed PubMed Central Google Scholar
Plum, T. et al. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 620, 634–642 (2023).
Article CAS PubMed PubMed Central Google Scholar
Flayer, C. H. et al. A γδ T cell–IL-3 axis controls allergic responses through sensory neurons. Nature 634, 440–446 (2024).
Article CAS PubMed Google Scholar
Tian, L., Ma, L., Kaarela, T. & Li, Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J. Neuroinflammation 9, 155 (2012).
Article CAS PubMed PubMed Central Google Scholar
Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624.e618 (2019).
Article CAS PubMed PubMed Central Google Scholar
Sanmarco, L. M. et al. Gut-licensed IFN-γ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).
Article CAS PubMed PubMed Central Google Scholar
Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).
留言 (0)