Microbiota–neuroepithelial signalling across the gut–brain axis

Bi, J. & Wang, Y. F. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect Sci. 27, 846–858 (2020).

Article  PubMed  Google Scholar 

Hueffer, K. et al. Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Sci. Rep. 7, 12818 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11, 13 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Vyas, A. & Sapolsky, R. Manipulation of host behaviour by Toxoplasma gondii: what is the minimum a proposed proximate mechanism should explain? Folia Parasitol. 57, 88–94 (2010).

Article  Google Scholar 

Hosokawa, T. & Fukatsu, T. Relevance of microbial symbiosis to insect behavior. Curr. Opin. Insect Sci. 39, 91–100 (2020).

Article  PubMed  Google Scholar 

Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).

Article  CAS  PubMed  Google Scholar 

Ahmed, H. et al. Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes 14, 2102878 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

Article  CAS  PubMed  Google Scholar 

Generoso, J. S., Giridharan, V. V., Lee, J., Macedo, D. & Barichello, T. The role of the microbiota–gut–brain axis in neuropsychiatric disorders. Braz. J. Psychiatry 43, 293–305 (2021).

Article  PubMed  Google Scholar 

Person, H. & Keefer, L. Psychological comorbidity in gastrointestinal diseases: update on the brain–gut–microbiome axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 107, 110209 (2021).

Article  PubMed  Google Scholar 

Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cryan, J. F. & Mazmanian, S. K. Microbiota–brain axis: context and causality. Science 376, 938–939 (2022).

Article  CAS  PubMed  Google Scholar 

Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sammons, M. et al. Brain–body physiology: local, reflex, and central communication. Cell 187, 5877–5890 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Backhed, F. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab. 58, 44–52 (2011).

Article  PubMed  Google Scholar 

Aburto, M. R. & Cryan, J. F. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis. Nat. Rev. Gastroenterol. Hepatol. 21, 222–247 (2024).

Article  PubMed  Google Scholar 

Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).

Article  CAS  PubMed  Google Scholar 

Oleskin, A. V. & Shenderov, B. A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 27, 30971 (2016).

PubMed  Google Scholar 

Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). This study shows that acetate produced by the gut microbiota can enter the brain and directly regulate hypothalamic control of appetite.

Article  CAS  PubMed  Google Scholar 

Falomir-Lockhart, L. J., Cavazzutti, G. F., Gimenez, E. & Toscani, A. M. Fatty acid signaling mechanisms in neural cells: fatty acid receptors. Front. Cell. Neurosci. 13, 162 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

Article  PubMed  Google Scholar 

Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klein Wolterink, R. G. J., Wu, G. S., Chiu, I. M. & Veiga-Fernandes, H. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 45, 339–360 (2022). This review provides an overview of the crosstalk between the nervous system and immune system in various organs and its role in tissue homeostasis.

Article  CAS  PubMed  Google Scholar 

Florsheim, E. B. et al. Immune sensing of food allergens promotes avoidance behaviour. Nature 620, 643–650 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plum, T. et al. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 620, 634–642 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flayer, C. H. et al. A γδ T cell–IL-3 axis controls allergic responses through sensory neurons. Nature 634, 440–446 (2024).

Article  CAS  PubMed  Google Scholar 

Tian, L., Ma, L., Kaarela, T. & Li, Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J. Neuroinflammation 9, 155 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624.e618 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanmarco, L. M. et al. Gut-licensed IFN-γ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif