Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens

Bush, K. The importance of β-lactamases to the development of new β-lactams. in Antimicrobial Drug Resistance: Mechanisms of Drug Resistance (ed. Mayers, D. L.) 135–144 (Humana Press, 2009).

Pandey, N. & Cascella, M. Beta lactam antibiotics. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK545311/ (2023).

Meletis, G. Carbapenem resistance: overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 3, 15–21 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

CAS  PubMed  Google Scholar 

Martin, J. K. et al. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

McLaughlin, M. et al. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob. Agents Chemother. 57, 5131–5133 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis (World Health Organization, 2022).

Everett, M. et al. Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 62, e00074-18 (2018).

PubMed  PubMed Central  Google Scholar 

González-Bello, C., Rodríguez, D., Pernas, M., Rodríguez, Á. & Colchón, E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 63, 1859–1881 (2020).

PubMed  Google Scholar 

Wang, D. Y., Abboud, M. I., Markoulides, M. S., Brem, J. & Schofield, C. J. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med. Chem. 8, 1063–1084 (2016).

CAS  PubMed  Google Scholar 

Lomovskaya, O. et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 61, e01443-17 (2017).

PubMed  PubMed Central  Google Scholar 

Mansour, H., Ouweini, A. E. L., Chahine, E. B. & Karaoui, L. R. Imipenem/cilastatin/relebactam: a new carbapenem β-lactamase inhibitor combination. Am. J. Health-Syst. Pharm. 78, 674–683 (2021).

PubMed  Google Scholar 

Lomovskaya, O. et al. QPX7728, an ultra-broad-spectrum β-lactamase inhibitor for intravenous and oral therapy: overview of biochemical and microbiological characteristics. Front. Microbiol. 12, 697180 (2021).

PubMed  PubMed Central  Google Scholar 

López, C., Ayala, J. A., Bonomo, R. A., González, L. J. & Vila, A. J. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat. Commun. 10, 3617 (2019).

PubMed  PubMed Central  Google Scholar 

Meini, M.-R., González, L. J. & Vila, A. J. Antibiotic resistance in Zn(II)-deficient environments: metallo-β-lactamase activation in the periplasm. Future Microbiol. 8, 947–979 (2013).

CAS  PubMed  Google Scholar 

González, J. M. et al. Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal–ligand interactions. Nat. Chem. Biol. 8, 698–700 (2012).

PubMed  PubMed Central  Google Scholar 

González, L. J. et al. Membrane-anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat. Chem. Biol. 12, 516–522 (2016).

PubMed  PubMed Central  Google Scholar 

Meini, M.-R., Tomatis, P. E., Weinreich, D. M. & Vila, A. J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

González, L. J., Bahr, G., González, M. M., Bonomo, R. A. & Vila, A. J. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat. Chem. Biol. 19, 1116–1126 (2023).

PubMed  PubMed Central  Google Scholar 

Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Côté, J. P. et al. The genome-wide interaction network of nutrient stress genes in Escherichia coli. mBio 7, e01714–e01716 (2016).

PubMed  PubMed Central  Google Scholar 

Velasco, E. et al. A new role for zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli. Sci. Rep. 8, 6535 (2018).

PubMed  PubMed Central  Google Scholar 

Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Galani, I., Souli, M., Chryssouli, Z., Katsala, D. & Giamarellou, H. First identification of an Escherichia coli clinical isolate producing both metallo-β-lactamase VIM-2 and extended-spectrum β-lactamase IBC-1. Clin. Microbiol. Infect. 10, 757–760 (2004).

CAS  PubMed  Google Scholar 

Maaroufi, R. et al. Occurrence of NDM-1 and VIM-2 co-producing Escherichia coli and OprD alteration in Pseudomonas aeruginosa isolated from hospital environment samples in northwestern Tunisia. Diagnostics 11, 1617 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Hernández-García, M. et al. Confronting ceftolozane-tazobactam susceptibility in multidrug-resistant Enterobacterales isolates and whole-genome sequencing results (STEP study). Int. J. Antimicrob. Agents 57, 106259 (2021).

PubMed  Google Scholar 

Hernández-García, M. et al. WGS characterization of MDR Enterobacterales with different ceftolozane/tazobactam susceptibility profiles during the SUPERIOR surveillance study in Spain. JAC Antimicrob. Resist. 2, dlaa084 (2020).

PubMed  PubMed Central  Google Scholar 

Falco, A., Ramos, Y., Franco, E., Guzmán, A. & Takiff, H. A cluster of KPC-2 and VIM-2-producing Klebsiella pneumoniae ST833 isolates from the pediatric service of a Venezuelan hospital. BMC Infect. Dis. 16, 595 (2016).

PubMed  PubMed Central  Google Scholar 

Mohammad Ali Tabrizi, A., Badmasti, F., Shahcheraghi, F. & Azizi, O. Outbreak of hypervirulent Klebsiella pneumoniae harbouring blaVIM-2 among mechanically-ventilated drug-poisoning patients with high mortality rate in Iran. J. Glob. Antimicrob. Resist. 15, 93–98 (2018).

PubMed  Google Scholar 

Vilacoba, E. et al. A blaVIM-2 plasmid disseminating in extensively drug-resistant clinical Pseudomonas aeruginosa and Serratia marcescens isolates. Antimicrob. Agents Chemother. 58, 7017 (2014).

PubMed  PubMed Central  Google Scholar 

Ghaith, D. M. et al. First reported nosocomial outbreak of Serratia marcescens harboring blaIMP-4 and blaVIM-2 in a neonatal intensive care unit in Cairo, Egypt. Infect. Drug Resist. 11, 2211–2217 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Yan, J.-J., Ko, W.-C., Chuang, C.-L. & Wu, J.-J. Metallo-β-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J. Antimicrob. Chemother. 50, 503–511 (2002).

CAS  PubMed  Google Scholar 

Porres-Osante, N. et al. First description of a blaVIM-2-carrying Citrobacter freundii isolate in Spain. Antimicrob. Agents Chemother. 58, 6331–6332 (2014).

PubMed  PubMed Central  Google Scholar 

Matsumura, Y. et al. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J. Antimicrob. Chemother. 72, 2249–2258 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Hong, D. J. et al. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect. Chemother. 47, 81–97 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Alcock, B. P. et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 51, D690–D699 (2023).

CAS  PubMed  Google Scholar 

Yonekawa, S. et al. Molecular and epidemiological characteristics of carbapenemase producing Klebsiella pneumoniae clinical isolates in Japan. mSphere 5, e00490-20 (2020).

PubMed  PubMed Central  Google Scholar 

Laubacher, M. E. & Ades, S. E. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J. Bacteriol. 190, 2065–2074 (2008).

CAS 

留言 (0)

沒有登入
gif