Bush, K. The importance of β-lactamases to the development of new β-lactams. in Antimicrobial Drug Resistance: Mechanisms of Drug Resistance (ed. Mayers, D. L.) 135–144 (Humana Press, 2009).
Pandey, N. & Cascella, M. Beta lactam antibiotics. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK545311/ (2023).
Meletis, G. Carbapenem resistance: overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 3, 15–21 (2016).
CAS PubMed PubMed Central Google Scholar
King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).
CAS PubMed PubMed Central Google Scholar
Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).
Martin, J. K. et al. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532 (2020).
CAS PubMed PubMed Central Google Scholar
McLaughlin, M. et al. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob. Agents Chemother. 57, 5131–5133 (2013).
CAS PubMed PubMed Central Google Scholar
2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis (World Health Organization, 2022).
Everett, M. et al. Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 62, e00074-18 (2018).
PubMed PubMed Central Google Scholar
González-Bello, C., Rodríguez, D., Pernas, M., Rodríguez, Á. & Colchón, E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 63, 1859–1881 (2020).
Wang, D. Y., Abboud, M. I., Markoulides, M. S., Brem, J. & Schofield, C. J. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med. Chem. 8, 1063–1084 (2016).
Lomovskaya, O. et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 61, e01443-17 (2017).
PubMed PubMed Central Google Scholar
Mansour, H., Ouweini, A. E. L., Chahine, E. B. & Karaoui, L. R. Imipenem/cilastatin/relebactam: a new carbapenem β-lactamase inhibitor combination. Am. J. Health-Syst. Pharm. 78, 674–683 (2021).
Lomovskaya, O. et al. QPX7728, an ultra-broad-spectrum β-lactamase inhibitor for intravenous and oral therapy: overview of biochemical and microbiological characteristics. Front. Microbiol. 12, 697180 (2021).
PubMed PubMed Central Google Scholar
López, C., Ayala, J. A., Bonomo, R. A., González, L. J. & Vila, A. J. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat. Commun. 10, 3617 (2019).
PubMed PubMed Central Google Scholar
Meini, M.-R., González, L. J. & Vila, A. J. Antibiotic resistance in Zn(II)-deficient environments: metallo-β-lactamase activation in the periplasm. Future Microbiol. 8, 947–979 (2013).
González, J. M. et al. Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal–ligand interactions. Nat. Chem. Biol. 8, 698–700 (2012).
PubMed PubMed Central Google Scholar
González, L. J. et al. Membrane-anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat. Chem. Biol. 12, 516–522 (2016).
PubMed PubMed Central Google Scholar
Meini, M.-R., Tomatis, P. E., Weinreich, D. M. & Vila, A. J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).
CAS PubMed PubMed Central Google Scholar
González, L. J., Bahr, G., González, M. M., Bonomo, R. A. & Vila, A. J. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat. Chem. Biol. 19, 1116–1126 (2023).
PubMed PubMed Central Google Scholar
Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).
CAS PubMed PubMed Central Google Scholar
Côté, J. P. et al. The genome-wide interaction network of nutrient stress genes in Escherichia coli. mBio 7, e01714–e01716 (2016).
PubMed PubMed Central Google Scholar
Velasco, E. et al. A new role for zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli. Sci. Rep. 8, 6535 (2018).
PubMed PubMed Central Google Scholar
Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012).
CAS PubMed PubMed Central Google Scholar
Galani, I., Souli, M., Chryssouli, Z., Katsala, D. & Giamarellou, H. First identification of an Escherichia coli clinical isolate producing both metallo-β-lactamase VIM-2 and extended-spectrum β-lactamase IBC-1. Clin. Microbiol. Infect. 10, 757–760 (2004).
Maaroufi, R. et al. Occurrence of NDM-1 and VIM-2 co-producing Escherichia coli and OprD alteration in Pseudomonas aeruginosa isolated from hospital environment samples in northwestern Tunisia. Diagnostics 11, 1617 (2021).
CAS PubMed PubMed Central Google Scholar
Hernández-García, M. et al. Confronting ceftolozane-tazobactam susceptibility in multidrug-resistant Enterobacterales isolates and whole-genome sequencing results (STEP study). Int. J. Antimicrob. Agents 57, 106259 (2021).
Hernández-García, M. et al. WGS characterization of MDR Enterobacterales with different ceftolozane/tazobactam susceptibility profiles during the SUPERIOR surveillance study in Spain. JAC Antimicrob. Resist. 2, dlaa084 (2020).
PubMed PubMed Central Google Scholar
Falco, A., Ramos, Y., Franco, E., Guzmán, A. & Takiff, H. A cluster of KPC-2 and VIM-2-producing Klebsiella pneumoniae ST833 isolates from the pediatric service of a Venezuelan hospital. BMC Infect. Dis. 16, 595 (2016).
PubMed PubMed Central Google Scholar
Mohammad Ali Tabrizi, A., Badmasti, F., Shahcheraghi, F. & Azizi, O. Outbreak of hypervirulent Klebsiella pneumoniae harbouring blaVIM-2 among mechanically-ventilated drug-poisoning patients with high mortality rate in Iran. J. Glob. Antimicrob. Resist. 15, 93–98 (2018).
Vilacoba, E. et al. A blaVIM-2 plasmid disseminating in extensively drug-resistant clinical Pseudomonas aeruginosa and Serratia marcescens isolates. Antimicrob. Agents Chemother. 58, 7017 (2014).
PubMed PubMed Central Google Scholar
Ghaith, D. M. et al. First reported nosocomial outbreak of Serratia marcescens harboring blaIMP-4 and blaVIM-2 in a neonatal intensive care unit in Cairo, Egypt. Infect. Drug Resist. 11, 2211–2217 (2018).
CAS PubMed PubMed Central Google Scholar
Yan, J.-J., Ko, W.-C., Chuang, C.-L. & Wu, J.-J. Metallo-β-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J. Antimicrob. Chemother. 50, 503–511 (2002).
Porres-Osante, N. et al. First description of a blaVIM-2-carrying Citrobacter freundii isolate in Spain. Antimicrob. Agents Chemother. 58, 6331–6332 (2014).
PubMed PubMed Central Google Scholar
Matsumura, Y. et al. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J. Antimicrob. Chemother. 72, 2249–2258 (2017).
CAS PubMed PubMed Central Google Scholar
Hong, D. J. et al. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect. Chemother. 47, 81–97 (2015).
CAS PubMed PubMed Central Google Scholar
Alcock, B. P. et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 51, D690–D699 (2023).
Yonekawa, S. et al. Molecular and epidemiological characteristics of carbapenemase producing Klebsiella pneumoniae clinical isolates in Japan. mSphere 5, e00490-20 (2020).
PubMed PubMed Central Google Scholar
Laubacher, M. E. & Ades, S. E. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J. Bacteriol. 190, 2065–2074 (2008).
留言 (0)