Phase-changing chalcogenide-based metasurface as dual-band modulator for terahertz photonic applications

V. Veselago, L. Braginsky, V. Shklover, C. Hafner, Negative refractive index materials. J. Comput. Theor. Nanosci. 3(2), 189–218 (2006). https://doi.org/10.1166/jctn.2006.3000

Article  Google Scholar 

T. Liu, C. Zhou, Le. Cheng, X. Jiang, G. Wang, Xu. Chen, S. Xiao, Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial. J. Opt. 21(3), 035101 (2019). https://doi.org/10.1088/2040-8986/aaffe2

Article  ADS  Google Scholar 

M. Manjappa, S.-Y. Chiam, L. Cong, A.A. Bettiol, W. Zhang, R. Singh, Tailoring the slow light behavior in terahertz metasurfaces. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4919531

Article  Google Scholar 

J. Wang, C. Fan, J. He, P. Ding, E. Liang, Q. Xue, Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt. Express 21, 2236 (2013). https://doi.org/10.1364/oe.21.002236

Article  ADS  MATH  Google Scholar 

M. Manjappa, Y.K. Srivastava, L. Cong, I. Al‐Naib, R. Singh, Active photoswitching of sharp fano resonances in THz metadevices. Adv. Mater. (2017). https://doi.org/10.1002/adma.201603355

Article  Google Scholar 

B. Luk’Yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010). https://doi.org/10.1038/nmat2810

Article  ADS  Google Scholar 

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A.A. Bettiol, Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B (2009). https://doi.org/10.1103/PhysRevB.80.153103

Article  Google Scholar 

Y.-S. Lee, Principles of Terahertz Science and Technology (Lecture Notes in Physics) (2009). https://doi.org/10.1007/978-0-387-09540-0.pdf

M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007). https://doi.org/10.1038/nphoton.2007.3

Article  ADS  Google Scholar 

J. Gao, R. Wang, Q. Zhao, Bo. Li, Ji. Zhou, A modularized and switchable component for flexible passive device: terahertz photonic crystals with fine‐tuning. Adv. Opt. Mater. (2018). https://doi.org/10.1002/adom.201800384

Article  Google Scholar 

P. Pitchappa, A. Kumar, S. Prakash, H. Jani, T. Venkatesan, R. Singh, Chalcogenide phase change material for active terahertz photonics. Adv. Mater. (2019). https://doi.org/10.1002/adma.201808157

Article  Google Scholar 

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, Z. Yang, Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures. ACS Photonics 5, 3040–3050 (2018). https://doi.org/10.1021/acsphotonics.8b00276

Article  MATH  Google Scholar 

M. Manjappa, Y.K. Srivastava, A. Solanki, A. Kumar, T.C. Sum, R. Singh, Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605881

Article  Google Scholar 

S. Savo, D. Shrekenhamer, W.J. Padilla, Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv Opt Mater. 2, 275–279 (2014). https://doi.org/10.1002/adom.201300384

Article  MATH  Google Scholar 

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S.P. Duttagupta, S.S. Prabhu, V.G. Achanta, G. S. Agarwal, Quadrupole-quadrupole interactions to control plasmon-induced transparency. Phys. Rev. Appl. (2018). https://doi.org/10.1103/PhysRevApplied.9.064015

Article  Google Scholar 

Z. Shen, T. Xiang, Wu. Nan, Wu. Jiong, Y. Tian, H. Yang, Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials. J. Phys. D Appl. Phys. 52(1), 015003 (2019). https://doi.org/10.1088/1361-6463/aae672

Article  ADS  Google Scholar 

M. Li, L. Guo, J. Dong, H. Yang, Resonant transparency in planar metamaterial with toroidal moment. Appl. Phys. Express 7(8), 082201 (2014). https://doi.org/10.7567/APEX.7.082201

Article  ADS  MATH  Google Scholar 

S. Mallick, S. Rane, N. Acharyya, D.R. Chowdhury, Accessing dual toroidal modes in terahertz plasmonic metasurfaces through polarization-sensitive resonance hybridization. New J. Phys. 25(5), 053016 (2023). https://doi.org/10.1088/1367-2630/acd3a2

Article  ADS  MATH  Google Scholar 

A. Bhattacharya, R. Sarkar, G. Kumar, Excitation of near field coupled dual toroidal resonances in a bilayer terahertz metamaterial configuration. J. Phys. D Appl. Phys. 54(28), 285102 (2021). https://doi.org/10.1088/1361-6463/abf8f0

Article  MATH  Google Scholar 

S. Han, M. Gupta, L. Cong, Y.K. Srivastava, R. Singh, Toroidal and magnetic fano resonances in planar THz metamaterials. J. Appl. Phys. (2017). https://doi.org/10.1063/1.5001246

Article  MATH  Google Scholar 

K. Marinov, A.D. Boardman, V.A. Fedotov, N. Zheludev, Toroidal metamaterial. New J. Phys. 9(9), 324–324 (2007). https://doi.org/10.1088/1367-2630/9/9/324

Article  ADS  Google Scholar 

M. Gupta, R. Singh, Toroidal versus fano resonances in high Q planar THz metamaterials. Adv. Opt. Mater. 4, 2119–2125 (2016). https://doi.org/10.1002/adom.201600553

Article  MATH  Google Scholar 

R. Singh, I.A.I. Al-Naib, M. Koch, W. Zhang, Sharp fano resonances in THz metamaterials. Opt. Express 19(7), 6312 (2011). https://doi.org/10.1364/OE.19.006312

Article  ADS  Google Scholar 

Introduction to Comsol Multiphysics ® Contact Information. (1998)

Y. Zeng, J. Wang, X. Yang, J. Yao, P. Li, Q. He, Xu. Ming, X. Miao, Broadband and ultrafast terahertz modulation with GeTe thin films. Opt. Mater. 136, 113447 (2023). https://doi.org/10.1016/j.optmat.2023.113447

Article  MATH  Google Scholar 

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, R. Singh, Fano resonances in terahertz metasurfaces: a figure of merit optimization. Adv Opt Mater. 3, 1537–1543 (2015). https://doi.org/10.1002/adom.201500207

Article  Google Scholar 

W.X. Lim, M. Manjappa, P. Pitchappa, R. Singh, Shaping high-Q planar fano resonant metamaterials toward futuristic technologies. Adv. Opt. Mater. (2018). https://doi.org/10.1002/adom.201800502

Article  Google Scholar 

S. Han, R. Singh, L. Cong, H. Yang, Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial. J. Phys. D Appl. Phys. 48(3), 035104 (2015). https://doi.org/10.1088/0022-3727/48/3/035104

Article  ADS  Google Scholar 

S. Han, L. Cong, F. Gao, R. Singh, H. Yang, Observation of fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials. Ann. Phys. 528, 352–357 (2016). https://doi.org/10.1002/andp.201600016

Article  MATH  Google Scholar 

D. Roy Chowdhury, R. Singh, A.J. Taylor, H.T. Chen, W. Zhang, A.K. Azad, Coupling schemes in terahertz planar metamaterials. Int. J. Opt. (2012). https://doi.org/10.1155/2012/148985

Article  Google Scholar 

A. Bhattacharya, R. Sarkar, N.K. Sharma, B.K. Bhowmik, A. Ahmad, G. Kumar, Multiband transparency effect induced by toroidal excitation in a strongly coupled planar terahertz metamaterial. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-98498-4

Article  MATH  Google Scholar 

V. Savinov, V.A. Fedotov, N.I. Zheludev, Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B (2014). https://doi.org/10.1103/PhysRevB.89.205112

Article  MATH  Google Scholar 

A.B. Evlyukhin, T. Fischer, C. Reinhardt, B.N. Chichkov, Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.94.205434

Article  MATH  Google Scholar 

C. Tang, Bo. Yan, Q. Wang, J. Chen, Z. Yan, F. Liu, N. Chen, C. Sui, Toroidal dipolar excitation in metamaterials consisting of metal nanodisks and a dielectrc spacer on metal substrate. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-00708-5

Article  MATH  Google Scholar 

H.B. Sedeh, D.G. Pires, N. Chandra, J. Gao, D. Tsvetkov, P. Terekhov, I. Kravchenko, N. Litchinitser, Manipulation of scattering spectra with topology of light and matter. Laser Photonics Rev. 17(3), 2200472 (2023). https://doi.org/10.1002/lpor.202200472

Article  ADS  Google Scholar 

A.K. Ospanova, A. Karabchevsky, A.A. Basharin, Metamaterial engineered transparency due to the nullifying of multipole moments. Opt. Lett. 43, 503 (2018). https://doi.org/10.1364/ol.43.000503

Article  ADS 

留言 (0)

沒有登入
gif