Miano, J. M., Fisher, E. A., & Majesky, M. W. (2021). Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation, 143, 2110–2116.
Article CAS PubMed PubMed Central Google Scholar
Mohindra, R., Agrawal, D. K. & Thankam, F. G. (2021). Altered vascular extracellular matrix in the pathogenesis of atherosclerosis. Journal of Cardiovascular Translational Research, 14, 647–660.
Cui, J. Z., Lee, L., Sheng, X., Chu, F., Gibson, C. P., Aydinian, T., Walker, D. C., Sandor, G. G. S., Bernatchez, P., Tibbits, G. F., van Breemen, C. & Esfandiarei, M. (2019). In vivo characterization of doxycycline-mediated protection of aortic function and structure in a mouse model of Marfan syndrome-associated aortic aneurysm. Scientific Reports, 9, 2071.
Article PubMed PubMed Central Google Scholar
Bastola, S., Kothapalli, C. & Ramamurthi, A. (2023). Sodium nitroprusside stimulation of elastic matrix regeneration by aneurysmal smooth muscle cells. Tissue Engineering Part A, 29, 225–243.
Article CAS PubMed PubMed Central Google Scholar
Carney, S., Broekelmann, T., Mecham, R. & Ramamurthi, A. (2022). JNK2 gene silencing for elastic matrix regenerative repair. Tissue Engineering Part A, 28, 239–253.
Article CAS PubMed PubMed Central Google Scholar
Dayal, S., Broekelmann, T., Mecham, R. P. & Ramamurthi, A. (2023). Targeting epidermal growth factor receptor to stimulate elastic matrix regenerative repair. Tissue Engineering Part A, 29, 187–199.
Article CAS PubMed PubMed Central Google Scholar
Dahal, S., Bastola, S. & Ramamurthi, A. (2024). JNK2 silencing lipid nanoparticles for elastic matrix repair. Journal of Biomedical Materials Research Part A, 112, 562–573.
Article CAS PubMed Google Scholar
Dayal, S. & Ramamurthi, A. (2024). Assessing efficacy of afatinib toward elastic matrix repair in aortic aneurysms. Tissue Engineering Part A, 30, 75–83.
Article CAS PubMed Google Scholar
Crandall, C. L., Caballero, B., Viso, M. E., Vyavahare, N. R. & Wagenseil, J. E. (2023). Pentagalloyl glucose (PGG) prevents and restores mechanical changes caused by elastic fiber fragmentation in the mouse ascending aorta. Annals of Biomedical Engineering, 51, 806–819.
Fletcher, A. J., Nash, J., Syed, M. B. J., Macaskill, M. G., Tavares, A. A. S., Walker, N., Salcudean, H., Leipsic, J. A., Lim, K. H. H., Madine, J., Wallace, W., Field, M., Newby, D. E., Bouchareb, R., Seidman, M. A., Akhtar, R. & Sellers, S. L. (2022). Microcalcification and thoracic aortopathy: A window into disease severity. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 1048–1059.
Article CAS PubMed PubMed Central Google Scholar
Zhang, R. M., Tiedemann, K., Muthu, M. L., Dinesh, N. E. H., Komarova, S., Ramkhelawon, B. & Reinhardt, D. P. (2022). Fibrillin-1-regulated miR-122 has a critical role in thoracic aortic aneurysm formation. Cellular and Molecular Life Sciences, 79, 314.
Article CAS PubMed PubMed Central Google Scholar
Faiyaz-Ul-Haque, M., Mubarak, M., AbdulWahab, A., AlRikabi, A. C., Alsaeed, A. H., Al-Otaiby, M., Nawaz, Z., Zaidi, S. H. E. & Basit, S. (2022). Ultrastructure abnormalities of collagen and elastin in Arab patients with arterial tortuosity syndrome. Journal of Cutaneous Pathology, 49, 618–622.
Schmelzer, C. E. H., & Duca, L. (2022). Elastic fibers: Formation, function, and fate during aging and disease. FEBS Journal, 289, 3704–3730.
Article CAS PubMed Google Scholar
Kondo, S., Tohgasaki, T., Shiga, S., Nishizawa, S., Ishiwatari, S., Ishikawa, S., Takeda, A. & Sakurai, T. (2022). Elastin microfibril interface-located protein 1 and its catabolic enzyme, cathepsin K, regulate the age-related structure of elastic fibers in the skin. Journal of Cosmetic Dermatology, 21, 4796–4804.
Duckworth, C., Stutts, J., Clatterbuck, K. & Nosoudi, N. (2023). Effect of ellagic acid and retinoic acid on collagen and elastin production by human dermal fibroblasts. Bio-Medical Materials and Engineering, 34, 473–480.
Article CAS PubMed Google Scholar
Serikawa, M., Ambe, K. & Usami, A. (2023). Histological observations of age-related changes in the epiglottis associated with decreased deglutition function in older adults. Anatomy & Cell Biology, 56, 374–381.
Tersteeg, C., Roest, M., Mak-Nienhuis, E. M., Ligtenberg, E., Hoefer, I. E., de Groot, P. G. & Pasterkamp, G. (2012). A fibronectin-fibrinogen-tropoelastin coating reduces smooth muscle cell growth but improves endothelial cell function. Journal of Cellular and Molecular Medicine, 16, 2117–2126.
Article CAS PubMed PubMed Central Google Scholar
Hubert, M. O., Rodriguez-Vita, J., Wiedmann, L. & Fischer, A. (2021). Isolation of murine primary aortic smooth muscle cells. Bio-protocol Journal, 11, e3907.
Ito, S., Amioka, N., Franklin, M. K., Wang, P., Liang, C. L., Katsumata, Y., Cai, L., Temel, R. E., Daugherty, A., Lu, H. S. & Sawada, H. (2023). Association of notch3 with elastic fiber dispersion in the infrarenal abdominal aorta of cynomolgus monkeys. Arteriosclerosis, Thrombosis, and Vascular Biology, 43, 2301–2311.
Article CAS PubMed PubMed Central Google Scholar
Sajeesh, S., Dahal, S., Bastola, S., Dayal, S., Yau, J. & Ramamurthi, A. (2022). Stem cell based approaches to modulate the matrix milieu in vascular disorders. Frontiers in Cardiovascular Medicine, 9, 879977.
Thomson, J., Singh, M., Eckersley, A., Cain, S. A., Sherratt, M. J. & Baldock, C. (2019). Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Seminars in Cell and Developmental Biology, 89, 109–117.
Article CAS PubMed Google Scholar
Charbonneau, N. L., Manalo, E. C., Tufa, S. F., Carlson, E. J., Carlberg, V. M., Keene, D. R. & Sakai, L. Y. (2020). Fibrillin-1 in the vasculature: In vivo accumulation of eGFP-tagged Fibrillin-1 in a knockin mouse model. The Anatomical Record (Hoboken), 303, 1590–1603.
Alonso, F., Dong, Y., Li, L., Jahjah, T., Dupuy, J. W., Fremaux, I., Reinhardt, D. P. & Génot, E. (2023). Fibrillin-1 regulates endothelial sprouting during angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 120, e2221742120.
Article CAS PubMed PubMed Central Google Scholar
Seeburun, S., Wu, S., Hemani, D., Pham, L., Ju, D., Xie, Y., Kata, P. & Li, L. (2023). Insights into elastic fiber fragmentation: Mechanisms and treatment of aortic aneurysm in Marfan syndrome. Vascular Pharmacology, 153, 107215.
Article PubMed PubMed Central Google Scholar
Muthu, M. L. & Reinhardt, D. P. (2020). Fibrillin-1 and fibrillin-1-derived asprosin in adipose tissue function and metabolic disorders. Journal of Cell Communication and Signaling, 14, 159–173.
Article PubMed PubMed Central Google Scholar
Inoue, K., Kuroda, N., & Sato, T. (2019). Elastic fiber system evaluated in the digestive organ of rats. Microscopy (Oxf), 68, 434–440.
Yanagisawa, H., & Wagenseil, J. (2020). Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biology, 85–86, 160–172.
Mohammadi, A., Sorensen, G. L., & Pilecki, B. (2022). MFAP4-mediated effects in elastic fiber homeostasis, integrin signaling and cancer, and its role in teleost fish. Cells, 11, 2115.
Article CAS PubMed PubMed Central Google Scholar
Akiyama, M. (2022). Elastic fibers and F-Box and WD-40 domain-containing Protein 2 in bovine periosteum and blood vessels. Biomimetics (Basel), 8, 7.
Akiyama, M. (2018). FBXW2 localizes with osteocalcin in bovine periosteum on culture dishes as visualized by double immunostaining. Heliyon, 4, e00782.
Article PubMed PubMed Central Google Scholar
Akiyama, M. (2023). Roles of two F-Box proteins: FBXL14 in the p
留言 (0)