Trans-2-hexenal reduces postharvest mango stem-end rot by oxidative damage to Neofusicoccum parvum cell membranes

Alberto Tuão Gava C, Araújo Pereira C, Fernnanda de Souza Tavares P, Domingos da Paz C (2022) Applying antagonist yeast strains to control mango decay caused by Lasiodiplodia theobromae and Neofusicoccum Parvum. Biol Control 170:104912. https://doi.org/10.1016/j.biocontrol.2022.104912

Article  CAS  Google Scholar 

Bambalele NL, Mditshwa A, Magwaza LS, Tesfay SZ (2021) Recent advances on postharvest technologies of mango fruit: a review. Int J Fruit Sci 21:565–586. https://doi.org/10.1080/15538362.2021.1918605

Article  Google Scholar 

Cai C, Ma R, Duan M et al (2020) Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. Lwt 131:109700. https://doi.org/10.1016/j.lwt.2020.109700

Article  CAS  Google Scholar 

de Oliveira KÁR, Berger LRR, de Araújo SA et al (2017) Synergistic mixtures of chitosan and Mentha Piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiol 66:96–103. https://doi.org/10.1016/j.fm.2017.04.012

Article  CAS  PubMed  Google Scholar 

Diskin S, Sharir T, Feygenberg O et al (2019) Fludioxonil – A potential alternative for postharvest disease control in mango fruit. Crop Prot 124:104855. https://doi.org/10.1016/j.cropro.2019.104855

Article  CAS  Google Scholar 

Duan X, OuYang Q, Jing G, Tao N (2016) Effect of sodium dehydroacetate on the development of sour rot on Satsuma mandarin. Food Control 65:8–13. https://doi.org/10.1016/j.foodcont.2016.01.011

Article  CAS  Google Scholar 

El Khetabi A, Lahlali R, Ezrari S et al (2022) Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: a review. Trends Food Sci Technol 120:402–417. https://doi.org/10.1016/j.tifs.2022.01.009

Article  CAS  Google Scholar 

Guo M, Feng J, Zhang P et al (2014) Postharvest treatment with trans-2-hexenal induced resistance against Botrytis Cinerea in tomato fruit. Australas Plant Pathol 44:121–128. https://doi.org/10.1007/s13313-014-0331-6

Article  CAS  Google Scholar 

Heras-Mozos R, García-Moreno A, Monedero-Prieto M et al (2021) Trans-2-hexenal-based antifungal packaging to extend the shelf life of strawberries. Foods 10:2166. https://doi.org/10.3390/foods10092166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hyun J, Lee JG, Yang KY et al (2022) Postharvest fumigation of (E)-2-hexenal on kiwifruit (Actinidia chinensis cv. ‘Haegeum’) enhances resistance to Botrytis Cinerea. Postharvest Biol Technol 187:111854. https://doi.org/10.1016/j.postharvbio.2022.111854

Article  CAS  Google Scholar 

Ibrahim Khaskheli M (2020) Mango diseases: impact of fungicides. Horticultural Crops. IntechOpen. https://doi.org/10.5772/intechopen.87081

Jin L, Lian X, Chen L et al (2024) Characteristic aroma analysis and interaction study of key aroma compounds of Chuanhong congou black tea. Eur Food Res Technol 250:441–454. https://doi.org/10.1007/s00217-023-04398-4

Article  CAS  Google Scholar 

Lan W, Wang S, Chen M et al (2020) Developing poly(vinyl alcohol)/chitosan films incorporate with d-limonene: study of structural, antibacterial, and fruit preservation properties. Int J Biol Macrom 145:722–732. https://doi.org/10.1016/j.ijbiomac.2019.12.230

Article  CAS  Google Scholar 

Li L, Tang X, Ouyang Q, Tao N (2019) Combination of sodium dehydroacetate and sodium silicate reduces sour rot of citrus fruit. Postharvest Biol Technol 151:19–25. https://doi.org/10.1016/j.postharvbio.2019.01.006

Article  CAS  Google Scholar 

Liu H, An K, Su S et al (2020) Aromatic characterization of mangoes (Mangifera indica L.) using solid phase extraction coupled with gas chromatography–mass spectrometry and olfactometry and sensory analyses. Foods 9:7. https://doi.org/10.3390/foods9010075

Article  CAS  Google Scholar 

Ma W, Zhao L, Xie Y (2017) Inhibitory effect of (E)-2-hexenal as a potential natural fumigant on aspergillus flavus in stored peanut seeds. Ind Crops Prod 107:206–210. https://doi.org/10.1016/j.indcrop.2017.05.051

Article  CAS  Google Scholar 

Ma S, Zhang J, Chen S, Zeng L (2019) The effects of (E)-2‐hexenal on morphological, physiological, and biochemical indices of postharvest disease Penicillium cyclopium spores. J Food Saf 39:e12700. https://doi.org/10.1111/jfs.12700

Article  Google Scholar 

Ma D, Wang G, Zhu J et al (2022) Green leaf volatile trans-2-hexenal inhibits the growth of Fusarium graminearum by inducing membrane damage, ROS accumulation, and cell dysfunction. J Agric Food Chem 70:5646–5657. https://doi.org/10.1021/acs.jafc.2c00942

Article  CAS  PubMed  Google Scholar 

Myung K, Hamilton-Kemp TR, Archbold DD (2006) Biosynthesis of trans-2-hexenal in response to wounding in strawberry fruit. J Agric Food Chem 54:1442–1448. https://doi.org/10.1021/jf052068+

Article  CAS  PubMed  Google Scholar 

Osset-Trénor P, Pascual-Ahuir A, Proft M (2023) Fungal drug response and antimicrobial resistance. J Fungi 9:565. https://doi.org/10.3390/jof9050565

Article  CAS  Google Scholar 

OuYang QL, Jia L, Tao NG (2016) Citral inhibits mycelial growth of Penicillium digitatum involving membrane peroxidation. Food Sci 37:32–37. https://doi.org/10.1016/j.foodcont.2014.01.010

Article  CAS  Google Scholar 

OuYang Q, Duan X, Li L, Tao N (2019) Cinnamaldehyde exerts its antifungal activity by disrupting the cell wall integrity of Geotrichum citri-aurantii. Front Microbiol 10:55. https://doi.org/10.3389/fmicb.2019.00055

Article  PubMed  PubMed Central  Google Scholar 

Perumal AB, Huang L, Nambiar RB et al (2022) Application of essential oils in packaging films for the preservation of fruits and vegetables: a review. Food Chem 375:131810. https://doi.org/10.1016/j.foodchem.2021.131810

Article  CAS  PubMed  Google Scholar 

Preethi P, Soorianathasundaram K, Sadasakthi A et al (2018) Influence of Hexanal formulation on storage life and post-harvest quality of mango fruits. J Environ Biol 39:1006–1014. https://doi.org/10.1016/10.22438/jeb/39/6/MRN-777

Article  CAS  Google Scholar 

Rafiullah KM, Suwanamornlert P, Sangchote S, Chonhenchob V (2020) Antifungal activity of propyl disulphide from neem against Lasiodiplodia theobromae and Neofusicoccum parvum causing stem end rot in mango. J Appl Microbiol 129:1364–1373. https://doi.org/10.1111/jam.14725

Article  CAS  Google Scholar 

Ren Y, Xue Y, Tian D et al (2020) Improvement of postharvest anthracnose resistance in mango fruit by nitric oxide and the possible mechanisms involved. J Agric Food Chem 68:15460–15467. https://doi.org/10.1021/acs.jafc.0c04270

Article  CAS  PubMed  Google Scholar 

Reymick OO, Liu D, Cheng Y et al (2022) Cuminaldehyde-induced oxidative stress inhibits growth of Penicillium digitatum in citrus. Postharvest Biol Technol 192:111991. https://doi.org/10.1016/j.postharvbio.2022.111991

Article  CAS  Google Scholar 

Sundar SK, Parikh JK (2023) Advances and trends in encapsulation of essential oils. Int J Pharm 635:122668. https://doi.org/10.1016/j.ijpharm.2023.122668

Article  CAS  PubMed  Google Scholar 

Tan X, Long C, Li L, Tao N (2022) Antifungal mechanism of sodium dehydroacetate against Penicillium Digitatum. Food Sci 43:19–26. https://doi.org/10.7506/spkx1002-6630-20211202-021

Article  Google Scholar 

Tan X, Zhao Y, Shan W et al (2023) Melatonin delays leaf senescence of postharvest Chinese flowering cabbage through ROS homeostasis. Food Res Int 138:109790. https://doi.org/10.1016/j.foodres.2020.109790

Article  CAS  Google Scholar 

Víglaš J, Olejníková P (2023) Antifungal azoles trigger a xenobiotic detoxification pathway and chitin synthesis in Neurospora Crassa. Res Microbiol 174:104055. https://doi.org/10.1016/j.resmic.2023.104055

Article  CAS  PubMed  Google Scholar 

Wakai J, Kusama S, Nakajima K et al (2019) Effects of trans-2-hexenal and cis-3-hexenal on post-harvest strawberry. Sci Rep 9:10112. https://doi.org/10.1038/s41598-019-46307-4

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif