Cellina M, Cè M, Irmici G, Ascenti V, Caloro E, Bianchi L, Pellegrino G, D’Amico N, Papa S, Carrafiello G (2022) Artificial intelligence in emergency radiology: where are we going? Diagnostics 12(12):3223
Article PubMed PubMed Central Google Scholar
Liu J, Varghese B, Taravat F, Eibschutz LS, Gholamrezanezhad A (2022) An extra set of intelligent eyes: application of artificial intelligence in imaging of abdominopelvic pathologies in emergency radiology. Diagnostics 12(6):1351
Article PubMed PubMed Central Google Scholar
Dreizin D (2023) The American Society of Emergency Radiology (ASER) AI/ML expert panel: inception, mandate, work products, and goals. Emerg Radiol 30(3):279–283
Dreizin D, Staziaki PV, Khatri GD, Beckmann NM, Feng Z, Liang Y, Delproposto ZS, Klug M, Spann JS, Sarkar N (2023) Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel. Emerg Radiol 30(3):251–265
Article PubMed PubMed Central Google Scholar
Agrawal A, Khatri GD, Khurana B, Sodickson AD, Liang Y, Dreizin D (2023) A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations. Emerg Radiol 30(3):267–277
Article PubMed PubMed Central Google Scholar
Cheng C-T, Ooyang C-H, Kang S-C, Liao C-H (2024) Applications of Deep Learning in Trauma Radiology: A Narrative Review. Biom J:100743
Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 291(3):781–791
Dreizin D, Zhang L, Sarkar N, Bodanapally UK, Li G, Hu J, Chen H, Khedr M, Khetan U, Campbell P (2023) Accelerating voxelwise annotation of cross-sectional imaging through AI collaborative labeling with quality assurance and bias mitigation. Front Radiol 3:1202412
Article PubMed PubMed Central Google Scholar
Diaz-Pinto A, Alle S, Nath V, Tang Y, Ihsani A, Asad M, Pérez-García F, Mehta P, Li W, Flores M (2024) Monai label: A framework for ai-assisted interactive labeling of 3d medical images. Med Image Anal 95:103207
Agrawal A (2022) Emergency teleradiology-past, present, and, is there a future. Front Radiol 2:866643
Article PubMed PubMed Central Google Scholar
Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE 109(5):820–838
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016; p. 770-778.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18: Springer, 2015; p. 234-241.
Torres-Lopez VM, Rovenolt GE, Olcese AJ, Garcia GE, Chacko SM, Robinson A, Gaiser E, Acosta J, Herman AL, Kuohn LR (2022) Development and validation of a model to identify critical brain injuries using natural language processing of text computed tomography reports. JAMA Netw Open 5(8):e2227109
Article PubMed PubMed Central Google Scholar
Le Guellec B, Lefèvre A, Geay C, Shorten L, Bruge C, Hacein-Bey L, Amouyel P, Pruvo J-P, Kuchcinski G, Hamroun A (2024) Performance of an open-source large language model in extracting information from free-text radiology reports. Radiol Artif Intell:e230364
Huang Y, Yang X, Liu L, Zhou H, Chang A, Zhou X, Chen R, Yu J, Chen J, Chen C (2024) Segment anything model for medical images? Med Image Anal 92:103061
Mohsan MM, Akram MU, Rasool G, Alghamdi NS, Baqai MAA, Abbas M (2022) Vision transformer and language model based radiology report generation. IEEE Access 11:1814–1824
Shen Y, Li J, Shao X, Romillo BI, Jindal A, Dreizin D, Unberath M. FastSAM3D: An Efficient Segment Anything Model for 3D Volumetric Medical Images. arXiv preprint arXiv:240309827 2024.
Hudnal C (2023) ACR eBulletin- "Choosing AI". American College of Radiology Press
Ahmad OF, Mori Y, Misawa M, Kudo S-e, Anderson JT, Bernal J, Berzin TM, Bisschops R, Byrne MF, Chen P-J (2021) Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method. Endoscopy 53(09):893–901
Lavin A, Gilligan-Lee CM, Visnjic A, Ganju S, Newman D, Ganguly S, Lange D, Baydin AG, Sharma A, Gibson A (2022) Technology readiness levels for machine learning systems. Nat Commun 13(1):6039
Article PubMed PubMed Central CAS Google Scholar
Weikert T, Cyriac J, Yang S, Nesic I, Parmar V, Stieltjes B (2020) A practical guide to artificial intelligence–based image analysis in radiology. Investig Radiol 55(1):1–7
Niederberger M, Köberich S, Network D (2021) Coming to consensus: the Delphi technique. Oxford University Press
Jünger S, Payne SA, Brine J, Radbruch L, Brearley SG (2017) Guidance on Conducting and REporting DElphi Studies (CREDES) in palliative care: Recommendations based on a methodological systematic review. Palliat Med 31(8):684–706
Diamond IR, Grant RC, Feldman BM, Pencharz PB, Ling SC, Moore AM, Wales PW (2014) Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol 67(4):401–409
Nowack M, Endrikat J, Guenther E (2011) Review of Delphi-based scenario studies: Quality and design considerations. Technol Forecast Soc Chang 78(9):1603–1615
Chen MM, Golding LP, Nicola GN (2021) Who will pay for AI? Radiology. Artif Intell 3(3):e210030
Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. npj Digital Med 3(1):118
Mei X, Liu Z, Robson PM, Marinelli B, Huang M, Doshi A, Jacobi A, Cao C, Link KE, Yang T (2022) RadImageNet: an open radiologic deep learning research dataset for effective transfer learning. Radiology. Artif Intell 4(5):e210315
Liu P, Han H, Du Y, Zhu H, Li Y, Gu F, Xiao H, Li J, Zhao C, Xiao L (2021) Deep learning to segment pelvic bones: large-scale CT datasets and baseline models. Int J Comput Assist Radiol Surg 16:749–756
Jin L, Yang J, Kuang K, Ni B, Gao Y, Sun Y, Gao P, Ma W, Tan M, Kang H (2020) Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. EBioMedicine 62
Kitamura FC, Prevedello LM, Colak E, Halabi SS, Lungren MP, Ball RL, Kalpathy-Cramer J, Kahn CE Jr, Richards T, Talbott JF (2024) Lessons Learned in Building Expertly Annotated Multi-Institution Datasets and Hosting the RSNA AI Challenges. Radiology. Artif Intell 6(3):e230227
Rudie JD, Lin H-M, Ball RL, Jalal S, Prevedello LM, Nicolaou S, Marinelli BS, Flanders AE, Magudia K, Shih G (2024) The RSNA Abdominal Traumatic Injury CT (RATIC) Dataset. Radiol Artif Intell 6(6):e240101
Article PubMed PubMed Central Google Scholar
Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H, Folio LR, Summers RM, Rubin DL, Lungren MP (2020) Preparing medical imaging data for machine learning. Radiology 295(1):4–15
Varoquaux G, Cheplygina V (2022) Machine learning for medical imaging: methodological failures and recommendations for the future. npj Digital Med 5(1):48
Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286(3):800–809
de Hond AA, Leeuwenberg AM, Hooft L, Kant IM, Nijman SW, van Os HJ, Aardoom JJ, Debray TP, Schuit E, van Smeden M (2022) Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. npj Digital Med 5(1):2
Tejani AS, Klontzas ME, Gatti AA, Mongan JT, Moy L, Park SH, Kahn CE Jr, Panel CU Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update. Radiol Artif Intell 2024:e240300
Allen B, Schmidt K, Brink L, Pisano E, Coombs L, Apgar C, Dreyer K, Wald C (2023) Specialty society support for multicenter research in artificial intelligence. Acad Radiol 30(4):640–643
Hwang SS, Song HH, Baik JH, Jung SL, Park SH, Choi KH, Park YH (2003) Researcher contributions and fulfillment of ICMJE authorship criteria: analysis of author contribution lists in research articles with multiple authors published in Radiology. Radiology 226(1):16–23
Rudie JD, Lin HM, Ball RL, Jalal S, Prevedello LM, Nicolaou S, Marinelli BS, Flanders AE, Magudia K, Shih G, Davis MA (2024) The RSNA Abdominal Traumatic Injury CT (RATIC) Dataset. Radiol Artif Intell 6(6):e240101
Linguraru MG, Bakas S, Aboian M, Chang PD, Flanders AE, Kalpathy-Cramer J, Kitamura FC, Lungren MP, Mongan J, Prevedello LM (2024) Clinical, Cultural, Computational, and Regulatory Considerations to Deploy AI in Radiology: Perspectives of RSNA and MICCAI Experts. Radiol Artif Intell:e240225
Obuchowski NA, Bullen J (2022) Multireader diagnostic accuracy imaging studies: fundamentals of design and analysis. Radiology 303(1):26–34
留言 (0)