Diagnostic performance of neural network algorithms in skull fracture detection on CT scans: a systematic review and meta-analysis

Gakuu LN (2011) The challenge of fracture management in osteoporotic bones. East Afr Orthop J 4

Scheyerer MJ, Simmen H-P, Wanner GA, Werner CML (2012) Osteoporotic fractures of axial skeleton. Praxis 101(16):1021–1030

Article  PubMed  Google Scholar 

Jacob O, Prathap A (2021) Maxillary Fractures. Oral and Maxillofacial Surgery for the Clinician

Furlow B 2014 Computed tomography of facial fractures. Radiologic technology. 85 5:523CT-39CT; quiz 40CT-42CT

Kendler DL, Bauer DC, Davison KS, Dian L, Hanley DA, Harris ST et al (2016) Vertebral Fractures: Clinical Importance and Management. Am J Med 129(2):221.e1–10

Article  PubMed  Google Scholar 

Kim G-U, Chang MC, Kim TU, Lee GW (2020) Diagnostic Modality in Spine Disease: A Review. Asian Spine J 14:910–920

Article  PubMed  PubMed Central  Google Scholar 

Bach CM, Steingruber I, Peer S, Peer-Kühberger R, Jaschke W, Ogon M (2001) Radiographic evaluation of cervical spine trauma. Arch Orthop Trauma Surg 121:385–387

Article  PubMed  Google Scholar 

Schuknecht B, Graetz KW (2005) Radiologic assessment of maxillofacial, mandibular, and skull base trauma. Eur Radiol 15:560–568

Article  PubMed  Google Scholar 

iData Research (2021) Over 75 million CT scans are performed each year and growing despite radiation concerns.  [cited 2024 Nov 25]. Available from: https://idataresearch.com/over-75-million-ct-scans-are-performed-each-year-and-growing-despite-radiation-concerns/

Treskes K, Sierink JC, Edwards MJR, Beuker BJA, Van Lieshout EMM, Hohmann J et al (2021) Cost-effectiveness of immediate total-body CT in patients with severe trauma (REACT-2 trial). Br J Surg 108(3):277–285

Article  PubMed  PubMed Central  Google Scholar 

Kalmet PHS, Sanduleanu S, Primakov S, Wu G, Jochems A, Refaee T et al (2020) Deep learning in fracture detection: a narrative review. Acta Orthop 91(2):215–220

Article  PubMed  PubMed Central  Google Scholar 

Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE (2013) Cognitive and system factors contributing to diagnostic errors in radiology. Am J Roentgenol 201(3):611–617

Article  Google Scholar 

Whang JS, Baker SR, Patel R, Luk L, Castro A 3rd (2013) The causes of medical malpractice suits against radiologists in the United States. Radiology 266(2):548–554

Article  PubMed  Google Scholar 

Petinaux B, Bhat R, Boniface K, Aristizabal J (2011) Accuracy of radiographic readings in the emergency department. Am J Emerg Med 29(1):18–25

Article  PubMed  Google Scholar 

Pinto A, Reginelli A, Pinto F, Lo Re G, Midiri F, Muzj C et al (2016) Errors in imaging patients in the emergency setting. Br J Radiol 89(1061):20150914

Article  PubMed  PubMed Central  Google Scholar 

Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT (2019) Convolutional Neural Networks for Automated Fracture Detection and Localization on Wrist Radiographs. Radiol Artif Intell 1(1):e180001

Article  PubMed  PubMed Central  Google Scholar 

Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:13126082. 2013

He K, Zhang X, Ren S, Sun J (2016) editors. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition

Teare P, Fishman M, Benzaquen O, Toledano E, Elnekave E (2017) Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement. J Digit Imaging 30(4):499–505

Article  PubMed  PubMed Central  Google Scholar 

Lakhani P, Sundaram B (2017) Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 284(2):574–582

Article  PubMed  Google Scholar 

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A et al (2016) Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 316(22):2402–2410

Article  PubMed  Google Scholar 

Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs. Radiology 287(1):313–322

Article  PubMed  Google Scholar 

Adams M, Chen W, Holcdorf D, McCusker MW, Howe PD, Gaillard F (2019) Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures. J Med Imaging Radiat Oncol 63(1):27–32

Article  PubMed  Google Scholar 

Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP et al (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89(4):468–473

Article  PubMed  PubMed Central  Google Scholar 

Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S et al (2018) Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 115(45):11591–11596

Article  PubMed  PubMed Central  Google Scholar 

Blüthgen C, Becker AS, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T (2020) Detection and localization of distal radius fractures: Deep learning system versus radiologists. Eur J Radiol. 126:108925

Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A et al (2017) Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 88(6):581–586

Article  PubMed  PubMed Central  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj 372.

Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

Article  PubMed  Google Scholar 

DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28(2):105–114

Article  PubMed  Google Scholar 

Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

Article  PubMed  PubMed Central  Google Scholar 

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

Article  PubMed  Google Scholar 

Wang X, Xu Z, Tong Y, Xia L, Jie B, Ding P et al (2022) Detection and classification of mandibular fracture on CT scan using deep convolutional neural network. Clin Oral Investig 26(6):4593–4601

Article  PubMed  Google Scholar 

Lee MJ, Hong H, Shim KW, Park S (2019) MGB-NET: Orbital bone segmentation from head and neck ct images using multi-graylevel-bone convolutional networks 2019. 692–5 p

Li L, Song X, Guo Y, Liu Y, Sun R, Zou H et al (2020) Deep convolutional neural networks for automatic detection of orbital blowout fractures. J Craniofac Surg 31(2):400–403

Article  PubMed  Google Scholar 

Shan W, Guo J, Mao X, Zhang Y, Huang Y, Wang S et al (2021) Automated identification of skull fractures with deep learning: a comparison between object detection and segmentation approach. Front Neurol 12:687931

Article  PubMed  PubMed Central  Google Scholar 

Amodeo M, Abbate V, Arpaia P, Cuocolo R, Dell’AversanaOrabona G, Murero M et al (2021) Transfer learning for an automated detection system of fractures in patients with maxillofacial trauma. Appl Sci 11(14):6293

Article  Google Scholar 

Seol YJ, Kim YJ, Kim YS, Cheon YW, Kim KG (2022) A Study on 3D Deep Learning-Based Automatic Diagnosis of Nasal Fractures. Sensors 22(2):506

Article  PubMed  PubMed Central  Google Scholar 

Emon MM, Ornob TR, Rahman M (2022) editors. Predicting skull fractures via CNN with classification algorithms. Proceedings of the 2nd international conference on computing advancements

Bao XL, Zhan X, Wang L, Zhu Q, Fan B, Li GY (2023) Automatic Identification and Segmentation of Orbital Blowout Fractures Based on Artificial Intelligence. Transl Vis Sci Technol 12(4):7

Article  PubMed  PubMed Central  Google Scholar 

Wang HC, Wang SC, Yan JL, Ko LW (2023) Artificial Intelligence Model Trained with Sparse Data to Detect Facial and Cranial Bone Fractures from Head CT. J Digit Imaging 36(4):1408–1418

Article  PubMed  PubMed Central  Google Scholar 

Tong Y, Jie B, Wang X, Xu Z, Ding P, He Y (2023) Is Convolutional Neural Network Accurate for Automatic Detection of Zygomatic Fractures on Computed Tomography? J Oral Maxillofac Surg 81(8):1011–1020

Article  PubMed 

留言 (0)

沒有登入
gif