The MDM2 SNP309 differentially impacts cardiorespiratory fitness in young healthy women and men

Ahmed S, Egginton S, Jakeman P et al (1997) Is human skeletal muscle capillary supply modelled according to fibre size or fibre type? Exp Physiol 82:231–234. https://doi.org/10.1113/expphysiol.1997.sp004012

Article  PubMed  Google Scholar 

Aiken J, Roudier E, Ciccone J et al (2016) Phosphorylation of murine double minute-2 on Ser166 is downstream of VEGF-A in exercised skeletal muscle and regulates primary endothelial cell migration and FoxO gene expression. FASEB J 30:1120–1134. https://doi.org/10.1096/fj.15-276964

Article  PubMed  Google Scholar 

Arena G, Cissé MY, Pyrdziak S et al (2018) Mitochondrial MDM2 regulates respiratory complex I activity independently of p53. Mol Cell 69:594-609.e8. https://doi.org/10.1016/j.molcel.2018.01.023

Article  PubMed  PubMed Central  Google Scholar 

Arva NC, Gopen TR, Talbott KE et al (2005) A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells*. J Biol Chem 280:26776–26787. https://doi.org/10.1074/jbc.M505203200

Article  PubMed  Google Scholar 

Besson T, Macchi R, Rossi J et al (2022) Sex differences in endurance running. Sports Med 52:1235–1257. https://doi.org/10.1007/s40279-022-01651-w

Article  PubMed  Google Scholar 

Beyfuss K, Erlich AT, Triolo M, Hood DA (2018) The role of p53 in determining mitochondrial adaptations to endurance training in skeletal muscle. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-32887-0

Article  Google Scholar 

Binet ER, McKenna CF, Salvador AF et al (2023) Sex-based comparisons of muscle cellular adaptations after 10 weeks of progressive resistance training in middle-aged adults. J Appl Physiol 134:116–129. https://doi.org/10.1152/japplphysiol.00274.2022

Article  PubMed  Google Scholar 

Blair SN, Church TS (2004) The fitness, obesity, and health equation: is physical activity the common denominator? JAMA 292:1232–1234. https://doi.org/10.1001/jama.292.10.1232

Article  PubMed  Google Scholar 

Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602. https://doi.org/10.1016/j.cell.2004.11.022

Article  PubMed  Google Scholar 

Bond GL, Hirshfield KM, Kirchhoff T et al (2006) MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66:5104–5110. https://doi.org/10.1158/0008-5472.CAN-06-0180

Article  PubMed  Google Scholar 

Bouchard C, Daw EW, Rice T et al (1998) Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc 30:252–258. https://doi.org/10.1097/00005768-199802000-00013

Article  PubMed  Google Scholar 

Bouchard C, An P, Rice T et al (1999) Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol Bethesda Md (1985) 87:1003–1008. https://doi.org/10.1152/jappl.1999.87.3.1003

Article  Google Scholar 

Bouchard C, Rankinen T, Timmons JA (2011) Genomics and genetics in the biology of adaptation to exercise. Compr Physiol 1:1603–1648. https://doi.org/10.1002/cphy.c100059

Article  PubMed  PubMed Central  Google Scholar 

Boulmpou A, Teperikidis E, Papadopoulos CΕ et al (2023) The role of cardiopulmonary exercise testing in risk stratification and prognosis of atrial fibrillation: a scoping review of the literature. Acta Cardiol 78:274–287. https://doi.org/10.1080/00015385.2022.2148894

Article  PubMed  Google Scholar 

Bredin SSD, Gledhill N, Jamnik VK, Warburton DER (2013) PAR-Q+ and ePARmed-X+. Can Fam Physician 59:273–277

PubMed  PubMed Central  Google Scholar 

Broxterman RM, Wagner PD, Richardson RS (2024) Endurance exercise training changes the limitation on muscle V̇O2max in normoxia from the capacity to utilize O2 to the capacity to transport O2. J Physiol 602(3):445–459. https://doi.org/10.1113/JP285650

Article  PubMed  Google Scholar 

Cahalin LP, Chase P, Arena R et al (2013) A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev 18:79–94. https://doi.org/10.1007/s10741-012-9332-0

Article  PubMed  PubMed Central  Google Scholar 

Cardús J, Marrades RM, Roca J et al (1998) Effects of FIO2 on leg ˙VO2 during cycle ergometry in sedentary subjects. Med Sci Sports Exerc 30:697

Article  PubMed  Google Scholar 

Chen Y-H, Wu H-L, Li C, et al (2006) Anti-angiogenesis mediated by angiostatin K1–3, K1–4 and K1–4.5. Involvement of p53, FasL, AKT and mRNA deregulation. Thromb Haemost 95:668–677

Coggan AR, Spina RJ, King DS et al (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol 47:B71-76. https://doi.org/10.1093/geronj/47.3.b71

Article  PubMed  Google Scholar 

Coyle EF, Coggan AR, Hopper MK (1988) Determinants of endurance in well-trained cyclists. J Appl Physiol Bethesda Md 64:2622–2630. https://doi.org/10.1152/jappl.1988.64.6.2622

Article  Google Scholar 

Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584. https://doi.org/10.1126/science.7521539

Article  PubMed  Google Scholar 

Economopoulos KP, Sergentanis TN (2010) Differential effects of MDM2 SNP309 polymorphism on breast cancer risk along with race: a meta-analysis. Breast Cancer Res Treat 120:211–216. https://doi.org/10.1007/s10549-009-0467-1

Article  PubMed  Google Scholar 

Espinosa-Ramírez M, Moya-Gallardo E, Araya-Román F, et al (2021) Sex-differences in the oxygenation levels of intercostal and vastus lateralis muscles during incremental exercise. Front Physiol. https://doi.org/10.3389/fphys.2021.738063

Fåhraeus R, Olivares-Illana V (2014) MDM2’s social network. Oncogene 33:4365–4376. https://doi.org/10.1038/onc.2013.410

Article  PubMed  Google Scholar 

Fu W, Ma Q, Chen L et al (2009) MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 284:13987–14000. https://doi.org/10.1074/jbc.M901758200

Article  PubMed  PubMed Central  Google Scholar 

Fung H-C, Scholz S, Matarin M et al (2006) Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 5:911–916. https://doi.org/10.1016/S1474-4422(06)70578-6

Article  PubMed  Google Scholar 

Ghosh S, Hota M, Chai X et al (2019) Exploring the underlying biology of intrinsic cardiorespiratory fitness through integrative analysis of genomic variants and muscle gene expression profiling. J Appl Physiol Bethesda Md (1985) 126:1292–1314. https://doi.org/10.1152/japplphysiol.00035.2018

Article  Google Scholar 

Gledhill N, Cox D, Jamnik R (1994) Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med Sci Sports Exerc 26:1116

Article  PubMed  Google Scholar 

Gries KJ, Raue U, Perkins RK et al (2018) Cardiovascular and skeletal muscle health with lifelong exercise. J Appl Physiol 125:1636–1645. https://doi.org/10.1152/japplphysiol.00174.2018

Article  PubMed  PubMed Central  Google Scholar 

Hagberg JM, McCole SD, Brown MD et al (2002) ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in postmenopausal women. J Appl Physiol 92:1083–1088. https://doi.org/10.1152/japplphysiol.00135.2001

Article  PubMed  Google Scholar 

Hancock R, Yavelberg L, Gledhill S et al (2023) Performing one or more verification VO2 workload(s) immediately after an incremental to maximal graded exercise test significantly increases the proportion of participants who meet the job-related aerobic fitness standard for structural firefighters. Eur J Appl Physiol 123:1929–1937. https://doi.org/10.1007/s00421-023-05204-5

Article  PubMed  Google Scholar 

Hanscombe KB, Persyn E, Traylor M et al (2021) The genetic case for cardiorespiratory fitness as a clinical vital sign and the routine prescription of physical activity in healthcare. Genome Med 13:180. https://doi.org/10.1186/s13073-021-00994-9

Article  PubMed  PubMed Central  Google Scholar 

Haseler LJ, Hogan MC, Richardson RS (1999) Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol (1985) 86(6):2013–2018. https://doi.org/10.1152/jappl.1999.86.6.2013

Haseler LJ, Lin AP, Richardson RS (2004) Skeletal muscle oxidative metabolism in sedentary humans: 31P-MRS assessment of O2 supply and demand limitations. J Appl Physiol (1985) 97(3):1077–1081. https://doi.org/10.1152/japplphysiol.01321.2003

留言 (0)

沒有登入
gif