Proteome-wide Mendelian randomization and therapeutic targets for bladder cancer

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

Compérat E, Amin MB, Cathomas R, Choudhury A, De Santis M, Kamat A, Stenzl A, Thoeny HC, Witjes JA. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet. 2022;400(10364):1712–21.

Article  PubMed  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA. 2021;326(16):1614–21.

Article  PubMed  Google Scholar 

Fauman EB, Hyde C. An optimal variant to gene distance window derived from an empirical definition of cis and trans protein QTLs. BMC Bioinformatics. 2022;23(1):169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, Wallace C, Burgess S. Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches. Am J Hum Genet. 2022;109(5):767–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Woolf B, Mason AM, Ala-Korpela M, Gill D. Addressing the credibility crisis in Mendelian randomization. BMC Med. 2024;22(1):374.

Article  PubMed  PubMed Central  Google Scholar 

Liu S, Crawford DC. Maturation and application of phenome-wide association studies. Trends Genet. 2022;38(4):353–63.

Article  PubMed  PubMed Central  Google Scholar 

Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pietzner M, Wheeler E, Carrasco-Zanini J, Cortes A, Koprulu M, Wörheide MA, Oerton E, Cook J, Stewart ID, Kerrison ND, et al. Mapping the proteo-genomic convergence of human diseases. Science. 2021;374(6569):eabj1541.

Article  PubMed  PubMed Central  Google Scholar 

Walker VM, Zheng J, Gaunt TR, Smith GD. Phenotypic Causal Inference Using Genome-Wide Association Study Data: Mendelian Randomization and Beyond. Annu Rev Biomed Data Sci. 2022;5:1–17.

Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64.

Article  PubMed  Google Scholar 

Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.

Article  PubMed  PubMed Central  Google Scholar 

Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol. 2014;67(8):850–7.

Article  PubMed  Google Scholar 

Korthauer K, Kimes PK, Duvallet C, Reyes A, Subramanian A, Teng M, Shukla C, Alm EJ, Hicks SC. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019;20(1):118.

Article  PubMed  PubMed Central  Google Scholar 

Drivas TG, Lucas A, Ritchie MD. eQTpLot: a user-friendly R package for the visualization of colocalization between eQTL and GWAS signals. BioData Min. 2021;14(1):32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Shen R, Zheng Z. Unraveling genetic threads: Identifying novel therapeutic targets for allergic rhinitis through Mendelian randomization. World Allergy Organ J. 2024;17(7): 100927.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su W-M, Gu X-J, Dou M, Duan Q-Q, Jiang Z, Yin K-F, Cai W-C, Cao B, Wang Y, Chen Y-P. Systematic druggable genome-wide Mendelian randomisation identifies therapeutic targets for Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2023;94(11):954–61.

Article  PubMed  Google Scholar 

Zhao W, Fang P, Lai C, Xu X, Wang Y, Liu H, Jiang H, Liu X, Liu J. Proteome-wide Mendelian randomization identifies therapeutic targets for ankylosing spondylitis. Front Immunol. 2024;15:1366736.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.

Article  PubMed  Google Scholar 

Jerome RN, Joly MM, Kennedy N, Shirey-Rice JK, Roden DM, Bernard GR, Holroyd KJ, Denny JC, Pulley JM. Leveraging Human Genetics to Identify Safety Signals Prior to Drug Marketing Approval and Clinical Use. Drug Saf. 2020;43(6):567–82.

Article  PubMed  PubMed Central  Google Scholar 

Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat Rev Genet. 2016;17(3):129–45.

Article  CAS  PubMed  Google Scholar 

Ye Z, Mayer J, Ivacic L, Zhou Z, He M, Schrodi SJ, Page D, Brilliant MH, Hebbring SJ. Phenome-wide association studies (PheWASs) for functional variants. Eur J Hum Genet. 2015;23(4):523–9.

Article  CAS  PubMed  Google Scholar 

Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol. 2017;71(1):96–108.

Article  PubMed  Google Scholar 

Senevirathne A, Aganja RP, Hewawaduge C, Lee JH. Inflammation-Related Immune-Modulatory SLURP1 Prevents the Proliferation of Human Colon Cancer Cells, and Its Delivery by Salmonella Demonstrates Cross-Species Efficacy against Murine Colon Cancer. Pharmaceutics. 2023;15(10):2462.

Steiner I, Flores-Tellez T, Mevel R, Ali A, Wang P, Schofield P, Behan C, Forsythe N, Ashton G, Taylor C, et al. Autocrine activation of MAPK signaling mediates intrinsic tolerance to androgen deprivation in LY6D prostate cancer cells. Cell Rep. 2023;42(4): 112377.

Article  CAS  PubMed  Google Scholar 

Andersson N, Ohlsson J, Wahlin S, Nodin B, Boman K, Lundgren S, Jirström K. Lymphocyte antigen 6 superfamily member D is a marker of urothelial and squamous differentiation: implications for risk stratification of bladder cancer. Biomark Res. 2020;8:51.

Article  PubMed  PubMed Central  Google Scholar 

Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A. 1998;95(4):1735–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M, Jahanban-Esfahlan R. Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int. 2024;24(1):135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahrenberg G, Brauers A, Joost HG, Jakse G. Reduced expression of PSCA, a member of the LY-6 family of cell surface antigens, in bladder, esophagus, and stomach tumors. Biochem Biophys Res Commun. 2000;275(3):783–8.

Article  CAS  PubMed  Google Scholar 

Wang XF, Liu DL, Geng L. The PSCA rs2294008 (C/T) Polymorphism Increases the Risk of Gastric and Bladder Cancer: A Meta-Analysis. Genet Test Mol Biomarkers. 2023;27(2):44–55.

Article  CAS  PubMed  Google Scholar 

Gakis G, Perner S, Stenzl A, Renninger M. The role of single-nucleotide polymorphisms of the 8q24 chromosome region in patients with concomitant bladder and prostate cancer. Scand J Urol. 2022;56(2):126–30.

留言 (0)

沒有登入
gif