14 Gbps QAM–OFDM optical wireless communication system employing pulse shaping technique in coastal water environment with optimization of cyclic prefix length

A. Huang, L. Tao, Y. Niu, Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation. Opt. Commun. 412, 21–27 (2018). https://doi.org/10.1016/j.optcom.2017.12.006

Article  ADS  Google Scholar 

J. Bai, S. Yang, A combined PAPR reduction method by PTS approach based on improved particle swarm optimization. Optik 232, 166581 (2021). https://doi.org/10.1016/j.ijleo.2021.166581

Article  Google Scholar 

X. Liu, S. Yi, X. Zhou, S. Zhang, Z. Fang, Z.J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, P. Tian, Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting. Opt. express 26(15), 19259–19274 (2018). https://doi.org/10.1364/OE.26.019259

Article  ADS  Google Scholar 

L. Zhang, X. Tang, C. Sun, Z. Chen, Z. Li, H. Wang, R. Jiang, W. Shi, A. Zhang, Over 10 attenuation length gigabits per second underwater wireless optical communication using a silicon photomultiplier (SiPM) based receiver. Opt. Express 28(17), 24968–24980 (2020). https://doi.org/10.1364/OE.397942

Article  ADS  Google Scholar 

J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B.M. Cochenour, E.G. Johnson, Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing. Opt. Express 24(9), 9794–9805 (2016)

Article  ADS  Google Scholar 

M.S. Islam, M. Younis, M. Mahmud, G. Carter, F.S. Choa, A peak detection based OOK photoacoustic modulation scheme for air to underwater communication. Opt. Commun. 529, 129078 (2023). https://doi.org/10.1016/j.optcom.2022.129078

Article  Google Scholar 

C.H. Kang, A. Trichili, O. Alkhazragi, H. Zhang, R.C. Subedi, Y. Guo, S. Mitra, C. Shen, I.S. Roqan, T.K. Ng, M.S. Alouini, Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Opt. Express 27(21), 30450–30461 (2019). https://doi.org/10.1364/OE.27.030450

Article  ADS  Google Scholar 

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, R. Liu, High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 25(2), 1193–1201 (2017). https://doi.org/10.1364/OE.25.001193

Article  ADS  Google Scholar 

T. Wang, R. Tian, R. Zhu, L. Jiang, C. Tong, H. Lu, Y. Song, P. Zhang, Improved underwater wireless optical communication using a passively mode-locked VECSEL. Opt. Commun. 547, 129850 (2023). https://doi.org/10.1016/j.optcom.2023.129850

Article  Google Scholar 

C. Fei, J. Zhang, G. Zhang, Y. Wu, X. Hong, S. He, Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization. J. Lightw. Technol. 36(3), 728–734 (2017)

Article  ADS  Google Scholar 

H.M. Oubei, J.R. Duran, B. Janjua, H.Y. Wang, C.T. Tsai, Y.C. Chi, T.K. Ng, H.C. Kuo, J.H. He, M.S. Alouini, G.R. Lin, 4.8 Gbit/s 16-QAM–OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 23(18), 23302–23309 (2015). https://doi.org/10.1364/OE.23.023302

Article  ADS  Google Scholar 

D. Chen, X. Zhang, K. Fan, J. Wang, H. Lu, Q. Wang, S. Wu, R. Hao, Z. Li, J. Jin, Experimental demonstration of a hybrid OFDMA/NOMA scheme for multi-user underwater wireless optical communication systems. Opt. Commun. 548, 129823 (2023). https://doi.org/10.1016/j.optcom.2023.129823

Article  Google Scholar 

X. Hong, J. Du, Y. Wang, R. Chen, J. Tian, G. Zhang, J. Zhang, C. Fei, S. He, Experimental demonstration of 55-m/2-Gbps underwater wireless optical communication using SiPM diversity reception and nonlinear decision-feedback equalizer. IEEE Access 10, 47814–47823 (2022). https://doi.org/10.1109/ACCESS.2022.3170889

Article  Google Scholar 

L.J. Johnson, F. Jasman, R.J. Green, M.S. Leeson, Recent advances in underwater optical wireless communications. Underw. Technol. 32(3), 167–175 (2014). https://doi.org/10.3723/ut.32.167

Article  Google Scholar 

Y. Song, W. Lu, B. Sun, Y. Hong, F. Qu, J. Han, W. Zhang, J. Xu, Experimental demonstration of MIMO-OFDM underwater wireless optical communication. Opt. Commun. 403, 205–210 (2017). https://doi.org/10.1016/j.optcom.2017.07.051

Article  ADS  Google Scholar 

G. Schirripa Spagnolo, L. Cozzella, F. Leccese, Underwater optical wireless communications: overview, Sensors 20(8), 2261 (2020). https://doi.org/10.3390/s20082261

L.K. Gkoura, G.D. Roumelas, H.E. Sandalidis, H.G. Nistazakis, A. Vavoulas, A.D. Tsigopoulos, G.S. Tombras, Underwater optical wireless communication systems: a concise review, Turbulence Modelling Approaches—Current State, Development Prospects, Applications (2017). https://doi.org/10.5772/67915

C. Shen, Y. Guo, H.M. Oubei, T.K. Ng, G. Liu, K.H. Park, K.T. Ho, M.S. Alouini, B.S. Ooi, 20-meter underwater wireless optical communication link with 1.5 Gbps data rate, Opt. Express 24(22), 25502–25509 (2016). https://doi.org/10.1364/OE.24.025502

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, P. Tian, 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express 25(22), 27937–27947 (2017). https://doi.org/10.1364/OE.25.027937

Article  ADS  Google Scholar 

C. Fei, Y. Wang, J. Du, R. Chen, N. Lv, G. Zhang, J. Tian, X. Hong, S. He, 100-m/3-Gbps underwater wireless optical transmission using a wideband photomultiplier tube (PMT). Opt. Express 30(2), 2326–2337 (2022). https://doi.org/10.1364/OE.448448

Article  ADS  Google Scholar 

M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, J. Xu, 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication. Opt. Express 25(17), 20829–20834 (2017). https://doi.org/10.1364/OE.25.020829

Article  ADS  Google Scholar 

J. Wang, C. Lu, S. Li, Z. Xu, 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Opt. Express 27(9), 12171–12181 (2019). https://doi.org/10.1364/OE.27.012171

Article  ADS  Google Scholar 

G. Azarnia, A.A. Sharifi, Clipping-based PAPR reduction of optical OFDM signals using compressive sensing: Bayesian signal reconstruction approach. Opt. Fiber Technol. 64, 102527 (2021). https://doi.org/10.1016/j.yofte.2021.102527

Article  Google Scholar 

X. Chen, W. Lyu, Z. Zhang, J. Zhao, J. Xu, 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction. Opt. Express 28(16), 23784–23795 (2020). https://doi.org/10.1364/OE.399794

Article  ADS  Google Scholar 

Y. Li, H. Qiu, X. Chen, J. Fu, A novel PAPR reduction algorithm for DCO-OFDM/OQAM system in underwater VLC. Opt. Commun. 463, 125449 (2020). https://doi.org/10.1016/j.optcom.2020.125449

Article  Google Scholar 

K. Nakamura, I. Mizukoshi, M. Hanawa, Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel. Opt. Express 23(2), 1558–1566 (2015). https://doi.org/10.1364/OE.23.001558

Article  ADS  Google Scholar 

H.H. Lu, C.Y. Li, H.H. Lin, W.S. Tsai, C.A. Chu, B.R. Chen, C.J. Wu, An 8 m/9.6 Gbps underwater wireless optical communication system. IEEE Photon. J. 8(5), 1–7 (2016). https://doi.org/10.1109/JPHOT.2016.2601778

Article  Google Scholar 

J. Xu, M. Kong, A. Lin, Y. Song, X. Yu, F. Qu, J. Han, N. Deng, OFDM-based broadband underwater wireless optical communication system using a compact blue LED. Opt. Commun. 369, 100–105 (2016). https://doi.org/10.1016/j.optcom.2016.02.044

Article  ADS  Google Scholar 

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, J. Xu, 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode. Opt. Express 25(13), 14760–14765 (2017). https://doi.org/10.1364/OE.25.014760

Article  ADS  Google Scholar 

L. Zhang, H. Wang, X. Shao, Improved m-QAM–OFDM transmission for underwater wireless optical communications. Opt. Commun. 423, 180–185 (2018). https://doi.org/10.1016/j.optcom.2018.04.026

Article  ADS  Google Scholar 

Y. Guo, X. Wang, M. Fu, QAM–OFDM transmission in underwater wireless optical communication system with limited resolution DAC. Opt. Quant. Electron. 52, 1–8 (2020). https://doi.org/10.1007/s11082-020-02529-9

Article  Google Scholar 

M. Arakawa, H. Ochiai, On throughput optimization for coded OFDM with variable cyclic prefix length, in 20th International Symposium on Wireless Personal Multimedia Communications (WPMC), IEEE 46–51 (2017)

W. Shieh, H. Bao, Y. Tang, Coherent optical OFDM: theory and design. Opt. Express 16(2), 841–859 (2008). https://doi.org/10.1364/OE.16.000841

Article  ADS  Google Scholar 

J.H. Manton, Dissecting OFDM: the independent roles of the cyclic prefix and the IDFT operation. IEEE Commun. Lett. 5(12), 474–476 (2001)

Article  Google Scholar 

V. Kotzsch, W. Rave, G. Fettweis, ISI analysis in network MIMO OFDM systems with insufficient cyclic prefix length, in 7th International Symposium on Wireless Communication Systems, IEEE 189–193 (2010). https://doi.org/10.1109/ISWCS.2010.5624259

H.M. Oubei, C. Li, K.H. Park, T.K. Ng, M.S. Alouini, B.S. Ooi, 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Express 23(16), 20743–20748 (2015). https://doi.org/10.1364/OE.23.020743

Article  ADS  Google Scholar 

L.J. Johnson, F. Jasman, R.J. Green, M.S. Leeson, Recent advances in underwater optical wireless communications. Underw. Technol. 32(3), 167–175 (2014)

Article  Google Scholar 

留言 (0)

沒有登入
gif