Performance analysis of optical amplifiers for Nyquist super channel transmission system

S.K. Tiwari, A.K. Jaiswal, M. Kumar, S.S.S. Manvendr, Performance analysis of optical amplifiers for incorporation in optical network. Int. J. Adv. Tech. Eng Sci (IJATES) 2, 238–47 (2014)

MATH  Google Scholar 

M.S. Ab-Rahman, M. Moghaddasi, A Comparison between electrical and optical chromatic dispersion compensation in wavelength divison multiplexing network regarding to electrical pulse shapes. J. Comput. Sci. 8(1), 76–83 (2012). https://doi.org/10.3844/jcssp.2012.76.83

Article  MATH  Google Scholar 

E. Pincemin, M. Song, Y. Loussouarn, S. Gauthier, Y. Chen, Z. Shengqian 400 Gbps Real-Time Coherent Nyquist-WDM DP-16QAM Transmission over Legacy G.652 or G.655 Fibre Infrastructure with 2 dB Margins. (2015) https://doi.org/10.1364/OFC.2015.W3E.3

MV Coelho, JL Mata, MJ Martins, Simulation of digital optical receiver with intensity modulation and direct detection, 2011 IEEE EUROCON - International Conference on Computer as a Tool, Lisbon, Portugal, pp. 1–4, (2011)https://doi.org/10.1109/EUROCON.2011.5929340.

P. Spalevic, B. Jakšić, A. Marković, M. Petrovic, M. Nešić, Influence of Signal Power and Thermal Noise of PIN Photodetectors on the Transmission WDM Network. System 3, 4 (2012)

Google Scholar 

V. Kumar, A.K. Jaiswal, M. Kumar, N. Agrawal, R. Saxena, Design and performance analysis of optical transmission system. IOSR J. Eng. (IOSRJEN). 4, 22–6 (2014)

Article  MATH  Google Scholar 

B. Attaouia, K. Malika, Optimized of erbium-doped-fiber amplifiers (EDFA) parameters in hybrid passive optical network (WDM/TDM-PON) systems with 512 users. World Appl. Sci. J. 33, 1042–51 (2015). https://doi.org/10.5829/idosi.wasj.2015.33.06.272

Article  Google Scholar 

A. Khemariya, A. Agrawal, A.K. Jaiswal, WDM EDFA+RFA hybrid amplifier for gain equalization in C band. Int. J. Comput. Appl. (IJCA). 128, 22–5 (2015)

Google Scholar 

A. Nandhini, K. Gokulakrishnan, Design of ultra-high capacity DWDM system with different modulation formats. Int. J. Sci. Eng. Res. (IJSER). ISSN (Online), pp 2347–3878

S. Singh, A. Sheetal, Comparison of advance data modulation formats in 4×10Gbps WDM optical communication system using ydfA, EDFA and Raman Amplifier. Int. J. Innov. Eng Technol. (IJIET) 5, 389 (2012)

MATH  Google Scholar 

S. Singh, S. Singh, Performance analysis of hybrid WDM-OTDM optical multicast overlay system employing 120 Gbps polarization and subcarrier multiplexed unicast signal with 40 Gbps multicast signal. Opt. Commun. 385, 36–42 (2017). https://doi.org/10.1016/j.optcom.2016.10.030

Article  ADS  MATH  Google Scholar 

M.S. Hossain, S. Howlader, R. Basak, Investigating the Q-factor and BER of a WDM system in optical fiber communication network by using SOA. Int. J. Innov. Sci. Res. 13, 315–322 (2015)

MATH  Google Scholar 

P. Bagga, H. Sarangal Analysis of DWDM system with hybrid amplifiers at different transmission distance. Int. J. Res. Electr. Comput. Eng. (IJRECE), 3(1) (2015)

P. Apoorva, H. Wadhwa, G. Kaur, Performance analysis of hybrid optical amplifiers for 32 channel WDM system at 10 Gbps bit rate for WAN applications. J Opt. Commun. 41(1), 23–29 (2020). https://doi.org/10.1515/joc-2017-0139

Article  MATH  Google Scholar 

M.E. Bashir, K. Singh, S. Devra, G. Kaur, Assessment of transmission reach of advanced modulation formats for an 8-channel Wavelength Division Multiplexing (WDM) system in the scenario of single-and mixed line rate optical networks. Res. J. Eng. Technol. 9(2), 150–160 (2018)

Article  MATH  Google Scholar 

N. Dayal, P. Singh, P. Kaur, Long range cost-effective WDM-FSO system using hybrid optical amplifiers. Wireless Pers. Commun. 97(4), 6055–6067 (2017). https://doi.org/10.1007/s11277-017-4826-7

Article  Google Scholar 

A. Dhokar, S.D. Deshmukh, Overview of EDFA for the efficient performance analysis. IOSR J. Eng. (IOSRJEN) Int. Organ. Sci. Res. 4, 1–8 (2014)

MATH  Google Scholar 

S Jain, M. Saxena, Gain and noise figure characteristic of EDFA by four stage method. Int. J. Comput. Appl., 124(1) (2015)

T. Huszaník, J. Turán, L. Ovsenik, Realization of a Long-haul Optical Link with Erbium Doped Fiber Amplifier. Carpath. J. Electr. Comput. Eng.. 11, 44–49 (2018). https://doi.org/10.2478/cjece-2018-0018

Article  MATH  Google Scholar 

L. Liying, M. Yu, Performance optimization based spectrum analysis on OFRA and EDFA Devices. TELKOMNIKA Indonesian J. Electr. Eng. (2013). https://doi.org/10.11591/telkomnika.v11i7.2822

Article  MATH  Google Scholar 

T.K. Yaratha, N. Reddy, G. Aarthi, WDM optical network analysis using EDFA and Raman amplifier. Indian J Appl Res 5, 346–9 (2015)

Google Scholar 

O. Mahran, M.H. Aly, Performance characteristics of dual-pumped hybrid EDFA/Raman optical amplifier. Appl. Opt. 55(1), 22–26 (2016). https://doi.org/10.1364/AO.55.000022

Article  ADS  MATH  Google Scholar 

A. Rashed, Interaction of avalanche photodiodes (APDs) devices With thermal irradiation environments. Int. J. Inform. Eng. Electron. Bus. 4, 51–61 (2012). https://doi.org/10.5815/ijieeb.2012.02.08

Article  ADS  MATH  Google Scholar 

M.M.A. Eid, A.N.Z. Rashed, Simulative and analytical methods of bidirectional EDFA amplifiers in optical communication links in the optimum case. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2020-0193

Article  MATH  Google Scholar 

B. Belmahdi, K. Mazighi (2019). The performance of an EDFA in a long distance wdm optical network. 2019 6th International Conference on Image and Signal Processing and Their Applications (ISPA). https://doi.org/10.1109/ispa48434.2019.896684

D. Tupyakov, N. Ivankov, I. Vorontsova, F. Kiselev, V. Egorov, Theoretical study of the EDFA optical amplifier implementation scheme improving the performance of a quantum key distribution system integrated with an WDM optical transport network. Nanosystems Phys Chem Math 14, 178–185 (2023). https://doi.org/10.17586/2220-8054-2023-14-2-178-185

Article  Google Scholar 

S. Seong-Ho, P. Seop-Hyeong, Theoretical design and analysis of EDFA gain control system based on two-level EDFA model. Stud. Inform. Control 22(1), 97–105 (2013). https://doi.org/10.24846/v22i1y201311

Article  MATH  Google Scholar 

F. Akhter, M.I. Ibrahimy, A.W. Naji, H.R. Siddiquei, Modeling and characterization of all possible triple pass EDFA configurations. Int. J. Phys. Sci. 7(18), 2656–2663 (2012)

Google Scholar 

Q. Mao, J. Wang, X. Sun, M. Zhang, A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber. Opt. Commun. 159, 149–157 (1999)

Article  ADS  MATH  Google Scholar 

D. Malik, G. Kaushik, A. Wason, Performance evaluation of optical amplifiers for high-speed optical networks. J. Opt. Commun. 41(1), 15–21 (2020). https://doi.org/10.1515/joc-2017-0133

Article  MATH  Google Scholar 

D. Rafique, T. Rahman, A. Napoli, M. Kuschnerov, G. Lehmann, B. Spinnler, Flex-grid optical networks: spectrum allocation and nonlinear dynamics of super-channels. Opt. Express 21, 32184–32191 (2013). https://doi.org/10.1364/OE.21.032184

Article  ADS  Google Scholar 

D. Amar et al., Link design and legacy amplifier limitation in flex-grid optical networks. IEEE Photonics J. 8(2), 1–10 (2016). https://doi.org/10.1109/JPHOT.2016.2527023

Article  MATH  Google Scholar 

B.C. Chatterjee, O.E. Sharma, Routing and spectrum allocation in elastic optical networks: a tutorial. IEEE Commun. Surv. Tutorials. 17(3), 1776–1800 (2015). https://doi.org/10.1109/COMST.2015.2431731

Article  MATH  Google Scholar 

K. Christodoulopoulos, I. Tomkos, E. Varvarigos, Elastic bandwidth allocation in flexible OFDM-based optical networks. J. Lightw. Technol. 29(9), 1354–1366 (2011). https://doi.org/10.1109/JLT.2011.2125777

Article  ADS  MATH  Google Scholar 

O. Rival, A. Morea, Elastic optical networks with 25–100 G format-versatile WDM transmission systems, Proc. 15th OECC, pp. 100–101, (2010) https://doi.org/10.1109/COMST.2015.2431731

BC Chatterjee, N Sarma, PP Sahu, A priority-based wavelength assignment scheme for optical network, Proc. IWNMA, (2011) pp. 1–6

G. Bosco, V. Curri, A. Carena, P. Poggiolini, F. Forghieri, On the performance of Nyquist-WDM terabit super-channels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. J. Lightwave Technol. 29, 53–61 (2011). https://doi.org/10.1109/JLT.2010.2091254

Article  ADS  MATH  Google Scholar 

M.W. Ashraf, S.M. Idrus, R.A. Butt, F. Iqbal, Post-disaster least loaded light path routing in elastic optical networks. Int. J. Commun. Systs. 32(8), e3920 (2019). https://doi.org/10.1002/dac.3920

Article  Google Scholar 

M. Xiang, Fu. Songnian, M. Tang, H. Tang, P. Shum, D. Liu, Nyquist WDM super-channel using offset-16QAM and receiver-side digital spectral shaping. Opt. Express 22, 17448–17457 (2014). https://doi.org/10.1364/OE.22.017448

Article  ADS  Google Scholar 

S. Devi, D. Sharma, YK Prajapati 5×222 Gb/s PM-16QAM Nyquist-WDM Super channel (February 23, 2019). Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur - India, February 26–28, 2019, https://doi.org/10.2139/ssrn.3351800.

J. Zhang, J. Yu, Z. Dong, Z. Jia, HC. Chien, Y. Cai, C. Ge, S. Shi, Y. Chen, H. Wang, and Y. Xia, Transmission of 20×440-Gb/s Super-Nyquist-Filtered Signals over 3600 km based on Single-Carrier 110-GBaud PDM QPSK with 100-GHz Grid, in Optical Fiber Communication Conference: Postdeadline Papers, (Optica Publishing Group, 2014), paper Th5B.3. https://doi.org/10.1364/OFC.2014.Th5B.3

K. Roberts, S. Foo, M. Moyer, M. Hubbard, A. Sinclair, J. Gaudette, C. Laperle, High-capacity transport—100G and beyond. J. Lightwave Technol. 33, 563–578 (2015). https://doi.org/10.1109/JLT.2014.2358203

Article  ADS  Google Scholar 

D. Sharma, Y. Prajapati, R. Tripathi, Success journey of coherent PM-QPSK technique with its variants: a survey. IETE Tech. Rev. 37, 1–20 (2018). https://doi.org/10.1080/02564602.2018.1557569

Article  MATH  Google Scholar 

T Rahman, D. Rafique, B. Spinnler, E. Pincemin, C. Le Bouette, J. Jauffrit, S. Calabrò, E. de Man, et al. (2015). Record field demonstration of C-band multi-terabit 16QAM, 32QAM and 64QAM over 762km of SSMF. 2015

留言 (0)

沒有登入
gif