Nair, P. N. (2004). Pathogenesis of apical periodontitis and the causes of endodontic failures. Critical Review in Oral Biology & Medicine, 15, 348–381.
Braz-Silva, P. H., Bergamini, M. L., Mardegan, A. P., De Rosa, C. S., Hasseus, B., & Jonasson, P. (2019). Inflammatory profile of chronic apical periodontitis: a literature review. Acta Odontologica Scandinavica, 77, 173–180.
Dai, X., Ma, R., Jiang, W., Deng, Z., Chen, L., Liang, Y., Shao, L., & Zhao, W. (2022). Enterococcus faecalis-Induced Macrophage Necroptosis Promotes Refractory Apical Periodontitis. Microbiology Spectrum Journal, 10, e0104522.
Liang, W., Wu, X., Dong, Y., Chen, X., Zhou, P., & Xu, F. (2021). Mechanical stimuli-mediated modulation of bone cell function-implications for bone remodeling and angiogenesis. Cell & Tissue Research, 386, 445–454.
Yu, X., Rong, P. Z., Song, M. S., Shi, Z. W., Feng, G., Chen, X. J., Shi, L., Wang, C. H., & Pang, Q. J. (2021). lncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway. Molecular Medicine, 27, 141.
Article CAS PubMed PubMed Central Google Scholar
Klenke, F. M., Liu, Y., Yuan, H., Hunziker, E. B., Siebenrock, K. A., & Hofstetter, W. (2008). Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. Journal of Biomedical Material Research Part A., 85, 777–786.
Gerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., & Ferrara, N. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine, 5, 623–628.
Article CAS PubMed Google Scholar
Melincovici, C. S., Boşca, A. B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I. M., Roman, A. L., & Mihu, C. M. (2018). Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Romanian Journal of Morphology and Embryology, 59, 455–467.
Tan, Y. Y., Yang, Y. Q., Chai, L., Wong, R. W., & Rabie, A. B. (2010). Effects of vascular endothelial growth factor (VEGF) on MC3T3-E1. Orthodontics & Craniofacial Research, 13, 223–228.
Hu, K., & Olsen, B. R. (2016). Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. Journal of Clinical Investigation, 126, 509–526.
Article PubMed PubMed Central Google Scholar
Zelzer, E., McLean, W., Ng, Y. S., Fukai, N., Reginato, A. M., Lovejoy, S., D’Amore, P. A., & Olsen, B. R. (2002). Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development, 129, 1893–1904.
Article CAS PubMed Google Scholar
Elumalai, P., Muninathan, N., Megalatha, S. T., Suresh, A., Kumar, K. S., Jhansi, N., Kalaivani, K., & Krishnamoorthy, G. (2022). An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. Evidence-Based Complementary & Alternative Medicine, 2022, 5901191.
Bhargava, P., Mahanta, D., Kaul, A., Ishida, Y., Terao, K., Wadhwa, R., & Kaul, S. C. (2021). Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients, 13, 2528.
Article CAS PubMed PubMed Central Google Scholar
Murtaza, G., Karim, S., Akram, M. R., Khan, S. A., Azhar, S., Mumtaz, A., & Bin Asad, M. H. (2014). Caffeic acid phenethyl ester and therapeutic potentials. Biomed Research International, 2014, 145342.
Article PubMed PubMed Central Google Scholar
Olgierd, B., Kamila, Ż., Anna, B., & Emilia, M. (2021). The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules, 2021, 26.
Kuramoto, H., Nakanishi, T., Takegawa, D., Mieda, K., & Hosaka, K. (2022). Caffeic Acid Phenethyl Ester Induces Vascular Endothelial Growth Factor Production and Inhibits CXCL10 Production in Human Dental Pulp Cells. Current Issues on Molecular Biology, 44, 5691–5699.
Kuo, Y. Y., Jim, W. T., Su, L. C., Chung, C. J., Lin, C. Y., Huo, C., Tseng, J. C., Huang, S. H., Lai, C. J., Chen, B. C., Wang, B. J., Chan, T. M., Lin, H. P., Chang, W. S., Chang, C. R., & Chuu, C. P. (2015). Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. International Journal of Molecular Science, 16, 10748–10766.
dos Santos, J. S., & Monte-Alto-Costa, A. (2013). Caffeic acid phenethyl ester improves burn healing in rats through anti-inflammatory and antioxidant effects. Journal of Burn Care & Research, 34, 682–688.
Uçan, M. C., Koparal, M., Ağaçayak, S., Gunay, A., Ozgoz, M., Atilgan, S., & Yaman, F. (2013). Influence of caffeic acid phenethyl ester on bone healing in a rat model. Journal of International Medical Research, 41, 1648–1654.
Kuramoto, H., Hirao, K., Yumoto, H., Hosokawa, Y., Nakanishi, T., Takegawa, D., Washio, A., Kitamura, C., & Matsuo, T. (2019). Caffeic Acid Phenethyl Ester (CAPE) Induces VEGF Expression and Production in Rat Odontoblastic Cells. BioMed Research International, 2019, 5390720.
Article PubMed PubMed Central Google Scholar
Yumoto, H., Hirao, K., Tominaga, T., Bando, N., Takahashi, K., & Matsuo, T. (2015). Electromagnetic wave irradiation promotes osteoblastic cell proliferation and up-regulates growth factors via activation of the ERK1/2 and p38 MAPK pathways. Cell Physiology & Biochemistry, 35, 601–615.
Kazancioglu, H. O., Aksakalli, S., Ezirganli, S., Birlik, M., Esrefoglu, M., & Acar, A. H. (2015). Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture. Drug Design, Development & Therapy, 9, 6483–6488.
Niu, Y., Wang, K., Zheng, S., Wang, Y., Ren, Q., Li, H., Ding, L., Li, W., & Zhang, L. (2020). Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Antimicrobial Agents Chemotherapy, 64, e00251–20.
Article CAS PubMed PubMed Central Google Scholar
Shimo, T., Nakanishi, T., Nishida, T., Asano, M., Kanyama, M., Kuboki, T., Tamatani, T., Tezuka, K., Takemura, M., Matsumura, T., & Takigawa, M. (1999). Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. Journal of Biochemistry, 126, 137–145.
Article CAS PubMed Google Scholar
Gibson, D. J., Pi, L., Sriram, S., Mao, C., Petersen, B. E., Scott, E. W., Leask, A., & Schultz, G. S. (2014). Conditional knockout of CTGF affects corneal wound healing. Investigative Ophthalmology Vis Science, 55, 2062–2070.
Yan, S., Zhang, M., Yang, G., Sun, Y., & Ai, D. (2022). CTGF Promotes the Osteoblast Differentiation of Human Periodontal Ligament Stem Cells by Positively Regulating BMP2/Smad Signal Transduction. Biomed Research International, 2022, 2938015.
Article PubMed PubMed Central Google Scholar
Mundy, C., Gannon, M., & Popoff, S. N. (2014). Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling. Journal of Cell Physiology, 229, 672–681.
Kose, K. N., Xie, J. F., Carnes, D. L., & Graves, D. T. (1996). Pro-inflammatory cytokines downregulate platelet derived growth factor-alpha receptor gene expression in human osteoblastic cells. Journal of Cell Physiology, 166, 188–197.
Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T., & De Bruijn, E. A. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 56, 549–580.
Article CAS PubMed Google Scholar
Kim, J. M., Lin, C., Stavre, Z., Greenblatt, M. B., & Shim, J. H. (2020). Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells, 9, 2073.
Article CAS PubMed PubMed Central Google Scholar
Ramasamy, S. K., Kusumbe, A. P., Schiller, M., Zeuschner, D., Bixel, M. G., Milia, C., Gamrekelashvili, J., Limbourg, A., Medvinsky, A., Santoro, M. M., Limbourg, F. P., & Adams, R. H. (2016). Blood flow controls bone vascular function and osteogenesis. Nature Communication, 7, 13601.
Huang, J., Han, Q., Cai, M., Zhu, J., Li, L., Yu, L., Wang, Z., Fan, G., Zhu, Y., Lu, J., & Zhou, G. (2022). Effect of Angiogenesis in Bone Tissue Engineering. Annals of Biomedical Engineering, 50, 898–913.
Hou, C. P., Tsui, K. H., Chang, K. S., Sung, H. C., Hsu, S. Y., Lin, Y. H., Yang, P. S., Chen, C. L., Feng, T. H., & Juang, H. H. (2022). Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15. Biomed Journal, 45, 763–775.
留言 (0)